
Basics of Linear Algebra for
Machine Learning

Discover the Mathematical
Language of Data in Python

Jason Brownlee

i

Disclaimer

The information contained within this eBook is strictly for educational purposes. If you wish to apply
ideas contained in this eBook, you are taking full responsibility for your actions.
The author has made every effort to ensure the accuracy of the information within this book was
correct at time of publication. The author does not assume and hereby disclaims any liability to any
party for any loss, damage, or disruption caused by errors or omissions, whether such errors or
omissions result from accident, negligence, or any other cause.
No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or
mechanical, recording or by any information storage and retrieval system, without written permission
from the author.

Acknowledgements

Special thanks to my copy editor Sarah Martin and my technical editors Arun Koshy and Andrei
Cheremskoy.

Copyright

Basics of Linear Algebra for Machine Learning
© Copyright 2018 Jason Brownlee. All Rights Reserved.

Edition: v1.1

Contents

Copyright i

Contents ii

Preface iii

I Introduction v

Welcome vi
Who Is This Book For? . vi
About Your Outcomes . vi
How to Read This Book . vii
About the Book Structure . vii
About Python Code Examples . viii
About Further Reading . ix
About Getting Help . ix
Summary . ix

II Foundations 1

1 Introduction to Linear Algebra 2
1.1 Tutorial Overview . 2
1.2 Linear Algebra . 2
1.3 Numerical Linear Algebra . 3
1.4 Linear Algebra and Statistics . 4
1.5 Applications of Linear Algebra . 5
1.6 Further Reading . 5
1.7 Summary . 6

2 Linear Algebra and Machine Learning 7
2.1 Reasons to NOT Learn Linear Algebra . 7
2.2 Learn Linear Algebra Notation . 8
2.3 Learn Linear Algebra Arithmetic . 8
2.4 Learn Linear Algebra for Statistics . 9
2.5 Learn Matrix Factorization . 9

ii

CONTENTS iii

2.6 Learn Linear Least Squares . 9
2.7 One More Reason . 9
2.8 Summary . 10

3 Examples of Linear Algebra in Machine Learning 11
3.1 Overview . 11
3.2 Dataset and Data Files . 12
3.3 Images and Photographs . 12
3.4 One Hot Encoding . 13
3.5 Linear Regression . 13
3.6 Regularization . 13
3.7 Principal Component Analysis . 14
3.8 Singular-Value Decomposition . 14
3.9 Latent Semantic Analysis . 14
3.10 Recommender Systems . 15
3.11 Deep Learning . 15
3.12 Summary . 15

III NumPy 16

4 Introduction to NumPy Arrays 17
4.1 Tutorial Overview . 17
4.2 NumPy N-dimensional Array . 17
4.3 Functions to Create Arrays . 18
4.4 Combining Arrays . 19
4.5 Extensions . 21
4.6 Further Reading . 21
4.7 Summary . 22

5 Index, Slice and Reshape NumPy Arrays 23
5.1 Tutorial Overview . 23
5.2 From List to Arrays . 23
5.3 Array Indexing . 25
5.4 Array Slicing . 27
5.5 Array Reshaping . 30
5.6 Extensions . 32
5.7 Further Reading . 33
5.8 Summary . 33

6 NumPy Array Broadcasting 35
6.1 Tutorial Overview . 35
6.2 Limitation with Array Arithmetic . 35
6.3 Array Broadcasting . 36
6.4 Broadcasting in NumPy . 36
6.5 Limitations of Broadcasting . 39
6.6 Extensions . 41

CONTENTS iv

6.7 Further Reading . 41
6.8 Summary . 42

IV Matrices 43

7 Vectors and Vector Arithmetic 44
7.1 Tutorial Overview . 44
7.2 What is a Vector . 44
7.3 Defining a Vector . 45
7.4 Vector Arithmetic . 45
7.5 Vector Dot Product . 49
7.6 Vector-Scalar Multiplication . 50
7.7 Extensions . 51
7.8 Further Reading . 51
7.9 Summary . 52

8 Vector Norms 53
8.1 Tutorial Overview . 53
8.2 Vector Norm . 53
8.3 Vector L1 Norm . 54
8.4 Vector L2 Norm . 55
8.5 Vector Max Norm . 55
8.6 Extensions . 56
8.7 Further Reading . 56
8.8 Summary . 57

9 Matrices and Matrix Arithmetic 58
9.1 Tutorial Overview . 58
9.2 What is a Matrix . 58
9.3 Defining a Matrix . 59
9.4 Matrix Arithmetic . 59
9.5 Matrix-Matrix Multiplication . 64
9.6 Matrix-Vector Multiplication . 66
9.7 Matrix-Scalar Multiplication . 67
9.8 Extensions . 69
9.9 Further Reading . 69
9.10 Summary . 70

10 Types of Matrices 71
10.1 Tutorial Overview . 71
10.2 Square Matrix . 72
10.3 Symmetric Matrix . 72
10.4 Triangular Matrix . 73
10.5 Diagonal Matrix . 74
10.6 Identity Matrix . 75
10.7 Orthogonal Matrix . 76

CONTENTS v

10.8 Extensions . 78
10.9 Further Reading . 78
10.10Summary . 79

11 Matrix Operations 80
11.1 Tutorial Overview . 80
11.2 Transpose . 80
11.3 Inverse . 81
11.4 Trace . 83
11.5 Determinant . 84
11.6 Rank . 85
11.7 Extensions . 87
11.8 Further Reading . 87
11.9 Summary . 88

12 Sparse Matrices 90
12.1 Tutorial Overview . 90
12.2 Sparse Matrix . 91
12.3 Problems with Sparsity . 91
12.4 Sparse Matrices in Machine Learning . 92
12.5 Working with Sparse Matrices . 93
12.6 Sparse Matrices in Python . 94
12.7 Extensions . 95
12.8 Further Reading . 95
12.9 Summary . 96

13 Tensors and Tensor Arithmetic 98
13.1 Tutorial Overview . 98
13.2 What are Tensors . 98
13.3 Tensors in Python . 99
13.4 Tensor Arithmetic . 100
13.5 Tensor Product . 104
13.6 Extensions . 105
13.7 Further Reading . 106
13.8 Summary . 107

V Factorization 108

14 Matrix Decompositions 109
14.1 Tutorial Overview . 109
14.2 What is a Matrix Decomposition . 109
14.3 LU Decomposition . 110
14.4 QR Decomposition . 111
14.5 Cholesky Decomposition . 112
14.6 Extensions . 114
14.7 Further Reading . 114

CONTENTS vi

14.8 Summary . 115

15 Eigendecomposition 116
15.1 Tutorial Overview . 116
15.2 Eigendecomposition of a Matrix . 117
15.3 Eigenvectors and Eigenvalues . 118
15.4 Calculation of Eigendecomposition . 118
15.5 Confirm an Eigenvector and Eigenvalue . 119
15.6 Reconstruct Matrix . 120
15.7 Extensions . 121
15.8 Further Reading . 121
15.9 Summary . 122

16 Singular Value Decomposition 123
16.1 Tutorial Overview . 123
16.2 What is the Singular-Value Decomposition . 124
16.3 Calculate Singular-Value Decomposition . 124
16.4 Reconstruct Matrix . 125
16.5 Pseudoinverse . 127
16.6 Dimensionality Reduction . 129
16.7 Extensions . 131
16.8 Further Reading . 132
16.9 Summary . 133

VI Statistics 135

17 Introduction to Multivariate Statistics 136
17.1 Tutorial Overview . 136
17.2 Expected Value and Mean . 136
17.3 Variance and Standard Deviation . 138
17.4 Covariance and Correlation . 141
17.5 Covariance Matrix . 143
17.6 Extensions . 144
17.7 Further Reading . 144
17.8 Summary . 146

18 Principal Component Analysis 147
18.1 Tutorial Overview . 147
18.2 What is Principal Component Analysis . 147
18.3 Calculate Principal Component Analysis . 149
18.4 Principal Component Analysis in scikit-learn . 150
18.5 Extensions . 151
18.6 Further Reading . 151
18.7 API . 151
18.8 Articles . 151
18.9 Summary . 152

CONTENTS vii

19 Linear Regression 153
19.1 Tutorial Overview . 153
19.2 What is Linear Regression . 154
19.3 Matrix Formulation of Linear Regression . 154
19.4 Linear Regression Dataset . 155
19.5 Solve via Inverse . 157
19.6 Solve via QR Decomposition . 158
19.7 Solve via SVD and Pseudoinverse . 160
19.8 Solve via Convenience Function . 162
19.9 Extensions . 163
19.10Further Reading . 164
19.11Summary . 165

VII Appendix 167

A Getting Help 168
A.1 Linear Algebra on Wikipedia . 168
A.2 Linear Algebra Textbooks . 168
A.3 Linear Algebra University Courses . 169
A.4 Linear Algebra Online Courses . 170
A.5 NumPy Resources . 170
A.6 Ask Questions About Linear Algebra . 171
A.7 How to Ask Questions . 171
A.8 Contact the Author . 171

B How to Setup a Workstation for Python 172
B.1 Overview . 172
B.2 Download Anaconda . 172
B.3 Install Anaconda . 174
B.4 Start and Update Anaconda . 176
B.5 Further Reading . 179
B.6 Summary . 179

C Linear Algebra Cheat Sheet 180
C.1 Array Creation . 180
C.2 Vectors . 180
C.3 Matrices . 181
C.4 Types of Matrices . 182
C.5 Matrix Operations . 183
C.6 Factorization . 183
C.7 Statistics . 184

D Basic Math Notation 186
D.1 Tutorial Overview . 186
D.2 The Frustration with Math Notation . 187
D.3 Arithmetic Notation . 187

CONTENTS viii

D.4 Greek Alphabet . 189
D.5 Sequence Notation . 190
D.6 Set Notation . 191
D.7 Other Notation . 192
D.8 Tips for Getting More Help . 192
D.9 Further Reading . 194
D.10 Summary . 194

VIII Conclusions 195

How Far You Have Come 196

Preface

I wrote this book to help machine learning practitioners, like you, get on top of linear algebra,
fast.

Linear Algebra Is Important in Machine Learning

There is no doubt that linear algebra is important in machine learning. Linear algebra is the
mathematics of data. It’s all vectors and matrices of numbers. Modern statistics is described
using the notation of linear algebra and modern statistical methods harness the tools of linear
algebra. Modern machine learning methods are described the same way, using the notations
and tools drawn directly from linear algebra. Even some classical methods used in the field,
such as linear regression via linear least squares and singular-value decomposition, are linear
algebra methods, and other methods, such as principal component analysis, were born from the
marriage of linear algebra and statistics. To read and understand machine learning, you must
be able to read and understand linear algebra.

Practitioners Study Linear Algebra Too Early

If you ask how to get started in machine learning, you will very likely be told to start with
linear algebra. We know that knowledge of linear algebra is critically important, but it does
not have to be the place to start. Learning linear algebra first, then calculus, probability,
statistics, and eventually machine learning theory is a long and slow bottom-up path. A better
fit for developers is to start with systematic procedures that get results, and work back to the
deeper understanding of theory, using working results as a context. I call this the top-down or
results-first approach to machine learning, and linear algebra is not the first step, but perhaps
the second or third.

Practitioners Study Too Much Linear Algebra

When practitioners do circle back to study linear algebra, they learn far more of the field
than is required for or relevant to machine learning. Linear algebra is a large field of study
that has tendrils into engineering, physics and quantum physics. There are also theorems and
derivations for nearly everything, most of which will not help you get better skill from or a
deeper understanding of your machine learning model. Only a specific subset of linear algebra
is required, though you can always go deeper once you have the basics.

ix

x

Practitioners Study Linear Algebra Wrong

Linear algebra textbooks will teach you linear algebra in the classical university bottom-up
approach. This is too slow (and painful) for your needs as a machine learning practitioner.
Like learning machine learning itself, take the top-down approach. Rather than starting with
theorems and abstract concepts, you can learn the basics of linear algebra in a concrete way with
data structures and worked examples of operations on those data structures. It’s so much faster.
Once you know how operations work, you can circle back and learn how they were derived.

A Better Way

This book was born out of my frustrations at seeing practitioner after practitioner diving into
linear algebra textbooks and online courses designed for undergraduate students and giving up.
The bottom-up approach is hard, especially if you already have a full time job. Linear algebra is
not only important to machine learning, but it is also a lot of fun, or can be if it is approached
in the right way. I put together this book to help you see the field the way I see it: as just
another set of tools we can harness on our journey toward machine learning mastery.

Jason Brownlee
2018

Part I

Introduction

xi

Welcome

Welcome to Basics of Linear Algebra for Machine Learning. Linear algebra is a pillar of machine
learning.

The field started to be formalized about 150 years ago, but it was only about 70 years ago
that modern linear algebra came into existence. It’s a huge field of study that has made an
impact on other areas of mathematics, such as statistics, as well as engineering and physics.
Thankfully, we don’t need to know the breadth and depth of the field of linear algebra in order
to improve our understanding and application of machine learning.

I designed this book to teach you step-by-step the basics of linear algebra with concrete and
executable examples in Python.

Who Is This Book For?

Before we get started, let’s make sure you are in the right place. This book is for developers that
may know some applied machine learning. Maybe you know how to work through a predictive
modeling problem end-to-end, or at least most of the main steps, with popular tools. The
lessons in this book do assume a few things about you, such as:

� You know your way around basic Python for programming.

� You may know some basic NumPy for array manipulation.

� You want to learn linear algebra to deepen your understanding and application of machine
learning.

This guide was written in the top-down and results-first machine learning style that you’re
used to from MachineLearningMastery.com.

About Your Outcomes

This book will teach you the basics of linear algebra that you need to know as a machine learning
practitioner. After reading and working through this book, you will know:

� What linear algebra is and why it is relevant and important to machine learning.

� How to create, index, and generally manipulate data in NumPy arrays.

� What a vector is and how to perform vector arithmetic and calculate vector norms.

xii

xiii

� What a matrix is and how to perform matrix arithmetic, including matrix multiplication.

� A suite of types of matrices, their properties, and advanced operations involving matrices.

� What a tensor is and how to perform basic tensor arithmetic.

� Matrix factorization methods, including the eigendecomposition and singular-value de-
composition.

� How to calculate and interpret basic statistics using the tools of linear algebra.

� How to implement methods using the tools of linear algebra such as principal component
analysis and linear least squares regression.

This new basic understanding of linear algebra will impact your practice of machine learning
in the following ways:

� Read the linear algebra mathematics in machine learning papers.

� Implement the linear algebra descriptions of machine learning algorithms.

� Describe your machine learning models using the notation and operations of linear algebra.

This book is not a substitute for an undergraduate course in linear algebra or a textbook for
such a course, although it could complement to such materials. For a good list of top courses,
textbooks, and other resources on linear algebra, see the Further Reading section at the end of
each tutorial.

How to Read This Book

This book was written to be read linearly, from start to finish. That being said, if you know the
basics and need help with a specific notation or operation, then you can flip straight to that
section and get started. This book was designed for you to read on your workstation, on the
screen, not on a tablet or eReader. My hope is that you have the book open right next to your
editor and run the examples as you read about them.

This book is not intended to be read passively or be placed in a folder as a reference text. It
is a playbook, a workbook, and a guidebook intended for you to learn by doing and then apply
your new understanding with working Python examples. To get the most out of the book, I
would recommend playing with the examples in each tutorial. Extend them, break them, then
fix them. Try some of the extensions presented at the end of each lesson and let me know how
you do.

About the Book Structure

This book was designed around major data structures, operations, and techniques in linear
algebra that are directly relevant to machine learning algorithms. There are a lot of things you
could learn about linear algebra, from theory to abstract concepts to APIs. My goal is to take

xiv

you straight to developing an intuition for the elements you must understand with laser-focused
tutorials.

I designed the tutorials to focus on how to get things done with linear algebra. They give
you the tools to both rapidly understand and apply each technique or operation. Each of the
tutorials are designed to take you about one hour to read through and complete, excluding the
extensions and further reading. You can choose to work through the lessons one per day, one per
week, or at your own pace. I think momentum is critically important, and this book is intended
to be read and used, not to sit idle. I would recommend picking a schedule and sticking to it.

The tutorials are divided into 5 parts:

� Part 1: Foundation. Discover a gentle introduction to the field of linear algebra and
the relationship it has with the field of machine learning.

� Part 2: NumPy. Discover NumPy tutorials that show you how to create, index, slice,
and reshape NumPy arrays, the main data structure used in machine learning and the
basis for linear algebra examples in this book.

� Part 3: Matrices. Discover the key structures for holding and manipulating data in
linear algebra in vectors, matrices, and tensors.

� Part 4: Factorization. Discover a suite of methods for decomposing a matrix into its
constituent elements in order to make numerical operations more efficient and more stable.

� Part 5: Statistics. Discover statistics through the lens of linear algebra and its applica-
tion to principal component analysis and linear regression.

Each part targets a specific learning outcome, and so does each tutorial within each part.
This acts as a filter to ensure you are only focused on the things you need to know to get to a
specific result and do not get bogged down in the math or near-infinite number of digressions.

The tutorials were not designed to teach you everything there is to know about each of the
theories or techniques of linear algebra. They were designed to give you an understanding of
how they work, how to use them, and how to interpret the results the fastest way I know how:
to learn by doing.

About Python Code Examples

The code examples were carefully designed to demonstrate the purpose of a given lesson. Code
examples are complete and standalone. The code for each lesson will run as-is with no code
from prior lessons or third parties required beyond the installation of the required packages. A
complete working example is presented with each tutorial for you to inspect and copy-and-paste.
All source code is also provided with the book and I would recommend running the provided
files whenever possible to avoid any copy-paste issues.

The provided code was developed in a text editor and intended to be run on the command
line. No special IDE or notebooks are required. If you are using a more advanced development
environment and are having trouble, try running the example from the command line instead.
All code examples were tested on a POSIX-compatible machine with Python 3.

xv

About Further Reading

Each lesson includes a list of further reading resources. This may include:

� Books and book chapters.

� API documentation.

� Articles and Webpages.

Wherever possible, I try to list and link to the relevant API documentation for key functions
used in each lesson so you can learn more about them. I have tried to link to books on Amazon
so that you can learn more about them. I don’t know everything, and if you discover a good
resource related to a given lesson, please let me know so I can update the book.

About Getting Help

You might need help along the way. Don’t worry; you are not alone.

� Help with a Technique? If you need help with the technical aspects of a specific
operation or technique, see the Further Reading sections at the end of each lesson.

� Help with NumPy? If you need help with using the NumPy library, see the list of
resources in the Further Reading section at the end of each lesson, and also see Appendix
A.

� Help with your workstation? If you need help setting up your environment, I would
recommend using Anaconda and following my tutorial in Appendix B.

� Help with the math? I provided a list of locations where you can search for answers
and ask questions about linear algebra math in Appendix A. You can also see Appendix D
for a crash course on math notation.

� Help in general? You can shoot me an email. My details are in Appendix A.

Summary

Are you ready? Let’s dive in!

Next

Next up you will discover a gentle introduction to the field of linear algebra.

Part II

Foundations

1

Chapter 1

Introduction to Linear Algebra

Linear algebra is a field of mathematics that is universally agreed to be a prerequisite to a
deeper understanding of machine learning. Although linear algebra is a large field with many
esoteric theories and findings, the nuts and bolts tools and notations taken from the field are
practical for machine learning practitioners. With a solid foundation of what linear algebra is,
it is possible to focus on just the good or relevant parts. In this tutorial, you will discover what
exactly linear algebra is from a machine learning perspective. After completing this tutorial,
you will know:

� Linear algebra is the mathematics of data.

� Linear algebra has had a marked impact on the field of statistics.

� Linear algebra underlies many practical mathematical tools, such as Fourier series and
computer graphics.

Let’s get started.

1.1 Tutorial Overview

This tutorial is divided into 4 parts; they are:

1. Linear Algebra.

2. Numerical Linear Algebra.

3. Linear Algebra and Statistics.

4. Applications of Linear Algebra.

1.2 Linear Algebra

Linear algebra is a branch of mathematics, but the truth of it is that linear algebra is the
mathematics of data. Matrices and vectors are the language of data. Linear algebra is about
linear combinations. That is, using arithmetic on columns of numbers called vectors and arrays

2

1.3. Numerical Linear Algebra 3

of numbers called matrices, to create new columns and arrays of numbers. Linear algebra is the
study of lines and planes, vector spaces and mappings that are required for linear transforms.

It is a relatively young field of study, having initially been formalized in the 1800s in order
to find unknowns in systems of linear equations. A linear equation is just a series of terms and
mathematical operations where some terms are unknown; for example:

y = 4× x+ 1 (1.1)

Equations like this are linear in that they describe a line on a two-dimensional graph. The
line comes from plugging in different values into the unknown x to find out what the equation
or model does to the value of y. We can line up a system of equations with the same form with
two or more unknowns; for example:

y = 0.1× x1 + 0.4× x2
y = 0.3× x1 + 0.9× x2
y = 0.2× x1 + 0.3× x2
· · ·

(1.2)

The column of y values can be taken as a column vector of outputs from the equation. The
two columns of integer values are the data columns, say a1 and a2, and can be taken as a matrix
A. The two unknown values x1 and x2 can be taken as the coefficients of the equation and
together form a vector of unknowns b to be solved. We can write this compactly using linear
algebra notation as:

y = A · b (1.3)

Problems of this form are generally challenging to solve because there are more unknowns
(here we have 2) than there are equations to solve (here we have 3). Further, there is often no
single line that can satisfy all of the equations without error. Systems describing problems we
are often interested in (such as a linear regression) can have an infinite number of solutions.
This gives a small taste of the very core of linear algebra that interests us as machine learning
practitioners. Much of the rest of the operations are about making this problem and problems
like it easier to understand and solve.

1.3 Numerical Linear Algebra

The application of linear algebra in computers is often called numerical linear algebra.

“numerical” linear algebra is really applied linear algebra.

— Page ix, Numerical Linear Algebra, 1997.

It is more than just the implementation of linear algebra operations in code libraries; it also
includes the careful handling of the problems of applied mathematics, such as working with the
limited floating point precision of digital computers. Computers are good at performing linear
algebra calculations, and much of the dependence on Graphical Processing Units (GPUs) by
modern machine learning methods such as deep learning is because of their ability to compute
linear algebra operations fast.

1.4. Linear Algebra and Statistics 4

Efficient implementations of vector and matrix operations were originally implemented in
the FORTRAN programming language in the 1970s and 1980s and a lot of code, or code ported
from those implementations, underlies much of the linear algebra performed using modern
programming languages, such as Python. Three popular open source numerical linear algebra
libraries that implement these functions are:

� Linear Algebra Package, or LAPACK.

� Basic Linear Algebra Subprograms, or BLAS (a standard for linear algebra libraries).

� Automatically Tuned Linear Algebra Software, or ATLAS.

Often, when you are calculating linear algebra operations directly or indirectly via higher-
order algorithms, your code is very likely dipping down to use one of these, or similar linear
algebra libraries. The name of one of more of these underlying libraries may be familiar to you
if you have installed or compiled any of Python’s numerical libraries such as SciPy and NumPy.

1.4 Linear Algebra and Statistics

Linear algebra is a valuable tool in other branches of mathematics, especially statistics.

Usually students studying statistics are expected to have seen at least one semester
of linear algebra (or applied algebra) at the undergraduate level.

— Page xv, Linear Algebra and Matrix Analysis for Statistics, 2014.

The impact of linear algebra is important to consider, given the foundational relationship
both fields have with the field of applied machine learning. Some clear fingerprints of linear
algebra on statistics and statistical methods include:

� Use of vector and matrix notation, especially with multivariate statistics.

� Solutions to least squares and weighted least squares, such as for linear regression.

� Estimates of mean and variance of data matrices.

� The covariance matrix that plays a key role in multinomial Gaussian distributions.

� Principal component analysis for data reduction that draws many of these elements
together.

As you can see, modern statistics and data analysis, at least as far as the interests of a
machine learning practitioner are concerned, depend on the understanding and tools of linear
algebra.

1.5. Applications of Linear Algebra 5

1.5 Applications of Linear Algebra

As linear algebra is the mathematics of data, the tools of linear algebra are used in many
domains. In his classical book on the topic titled Introduction to Linear Algebra, Gilbert Strang
provides a chapter dedicated to the applications of linear algebra. In it, he demonstrates specific
mathematical tools rooted in linear algebra. Briefly they are:

� Matrices in Engineering, such as a line of springs.

� Graphs and Networks, such as analyzing networks.

� Markov Matrices, Population, and Economics, such as population growth.

� Linear Programming, the simplex optimization method.

� Fourier Series: Linear Algebra for functions, used widely in signal processing.

� Linear Algebra for statistics and probability, such as least squares for regression.

� Computer Graphics, such as the various translation, rescaling and rotation of images.

Another interesting application of linear algebra is that it is the type of mathematics used
by Albert Einstein in parts of his theory of relativity. Specifically tensors and tensor calculus.
He also introduced a new type of linear algebra notation to physics called Einstein notation, or
the Einstein summation convention.

1.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

1.6.1 Books

� Introduction to Linear Algebra, 2016.
http://amzn.to/2j2J0g4

� Numerical Linear Algebra, 1997.
http://amzn.to/2kjEF4S

� Linear Algebra and Matrix Analysis for Statistics, 2014.
http://amzn.to/2A9ceNv

1.6.2 Articles

� Linear Algebra on Wikipedia.
https://en.wikipedia.org/wiki/Linear_algebra

� Linear Algebra Category on Wikipedia.
https://en.wikipedia.org/wiki/Category:Linear_algebra

http://amzn.to/2j2J0g4
http://amzn.to/2kjEF4S
http://amzn.to/2A9ceNv
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Category:Linear_algebra

1.7. Summary 6

� Linear Algebra List of Topics on Wikipedia.
https://en.wikipedia.org/wiki/List_of_linear_algebra_topics

� LAPACK on Wikipedia.
https://en.wikipedia.org/wiki/LAPACK

� Basic Linear Algebra Subprograms on Wikipedia.
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

� Automatically Tuned Linear Algebra Software on Wikipedia.
https://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software

� Einstein notation on Wikipedia.
https://en.wikipedia.org/wiki/Einstein_notation

� Mathematics of general relativity on Wikipedia.
https://en.wikipedia.org/wiki/Mathematics_of_general_relativity

1.7 Summary

In this tutorial, you discovered a gentle introduction to linear algebra from a machine learning
perspective. Specifically, you learned:

� Linear algebra is the mathematics of data.

� Linear algebra has had a marked impact on the field of statistics.

� Linear algebra underlies many practical mathematical tools, such as Fourier series and
computer graphics.

1.7.1 Next

In the next chapter you will discover why linear algebra is important to machine learning.

https://en.wikipedia.org/wiki/List_of_linear_algebra_topics
https://en.wikipedia.org/wiki/LAPACK
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software
https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Mathematics_of_general_relativity

Chapter 2

Linear Algebra and Machine Learning

Linear algebra is a field of mathematics that could be called the mathematics of data. It is
undeniably a pillar of the field of machine learning, and many recommend it as a prerequisite
subject to study prior to getting started in machine learning. This is misleading advice, as linear
algebra makes more sense to a practitioner once they have a context of the applied machine
learning process in which to interpret it. In this chapter, you will discover why machine learning
practitioners should study linear algebra to improve their skills and capabilities as practitioners.
After reading this chapter, you will know:

� Not everyone should learn linear algebra, that it depends where you are in your process of
learning machine learning.

� 5 Reasons why a deeper understanding of linear algebra is required for intermediate
machine learning practitioners.

� That linear algebra can be fun if approached in the right way.

Let’s get started.

2.1 Reasons to NOT Learn Linear Algebra

Before we go through the reasons that you should learn linear algebra, let’s start off by taking a
small look at the reason why you should not. I think you should not study linear algebra if you
are just getting started with applied machine learning.

� It’s not required. Having an appreciation for the abstract operations that underly some
machine learning algorithms is not required in order to use machine learning as a tool to
solve problems.

� It’s slow. Taking months to years to study an entire related field before machine learning
will delay you achieving your goals of being able to work through predictive modeling
problems.

� It’s a huge field. Not all of linear algebra is relevant to theoretical machine learning, let
alone applied machine learning.

7

2.2. Learn Linear Algebra Notation 8

I recommend a breadth-first approach to getting started in applied machine learning. I call
this approach a results-first approach. It is where you start by learning and practicing the steps
for working through a predictive modeling problem end-to-end (e.g. how to get results) with a
tool (such as scikit-learn and Pandas in Python). This process then provides the skeleton and
context for progressively deepening your knowledge, such as how algorithms work and eventually
the math that underlies them. After you know how to work through a predictive modeling
problem, let’s look at why you should deepen your understanding of linear algebra.

Linear algebra is a branch of mathematics that is widely used throughout science
and engineering. However, because linear algebra is a form of continuous rather
than discrete mathematics, many computer scientists have little experience with it.

— Page 31, Deep Learning, 2016.

2.2 Learn Linear Algebra Notation

You need to be able to read and write vector and matrix notation. Algorithms are described
in books, papers and on websites using vector and matrix notation. Linear algebra is the
mathematics of data and the notation allows you to describe operations on data precisely with
specific operators. You need to be able to read and write this notation. This skill will allow you
to:

� Read descriptions of existing algorithms in textbooks.

� Interpret and implement descriptions of new methods in research papers.

� Concisely describe your own methods to other practitioners.

Further, programming languages such as Python offer efficient ways of implementing linear
algebra notation directly. An understanding of the notation and how it is realized in your
language or library will allow for shorter and perhaps more efficient implementations of machine
learning algorithms.

2.3 Learn Linear Algebra Arithmetic

In partnership with the notation of linear algebra are the arithmetic operations performed. You
need to know how to add, subtract, and multiply scalars, vectors, and matrices. A challenge for
newcomers to the field of linear algebra are operations such as matrix multiplication and tensor
multiplication that are not implemented as the direct multiplication of the elements of these
structures, and at first glance appear nonintuitive.

Again, most if not all of these operations are implemented efficiently and provided via API
calls in modern linear algebra libraries. An understanding of how vector and matrix operations
are implemented is required as a part of being able to effectively read and write matrix notation.

2.4. Learn Linear Algebra for Statistics 9

2.4 Learn Linear Algebra for Statistics

You must learn linear algebra in order to be able to learn statistics. Especially multivariate
statistics. Statistics and data analysis are another pillar field of mathematics to support machine
learning. They are primarily concerned with describing and understanding data. As the
mathematics of data, linear algebra has left its fingerprint on many related fields of mathematics,
including statistics.

In order to be able to read and interpret statistics, you must learn the notation and operations
of linear algebra. Modern statistics uses both the notation and tools of linear algebra to describe
the tools and techniques of statistical methods. From vectors for the means and variances of
data, to covariance matrices that describe the relationships between multiple Gaussian variables.
The results of some collaborations between the two fields are also staple machine learning
methods, such as the Principal Component Analysis, or PCA for short, used for data reduction.

2.5 Learn Matrix Factorization

Building on notation and arithmetic is the idea of matrix factorization, also called matrix
decomposition. You need to know how to factorize a matrix and what it means. Matrix
factorization is a key tool in linear algebra and used widely as an element of many more complex
operations in both linear algebra (such as the matrix inverse) and machine learning (least
squares).

Further, there are a range of different matrix factorization methods, each with different
strengths and capabilities, some of which you may recognize as ”machine learning” methods,
such as Singular-Value Decomposition, or SVD for short, for data reduction. In order to read
and interpret higher-order matrix operations, you must understand matrix factorization.

2.6 Learn Linear Least Squares

You need to know how to use matrix factorization to solve linear least squares. Linear algebra
was originally developed to solve systems of linear equations. These are equations where there
are more equations than there are unknown variables. As a result, they are challenging to
solve arithmetically because there is no single solution as there is no line or plane can fit the
data without some error. Problems of this type can be framed as the minimization of squared
error, called least squares, and can be recast in the language of linear algebra, called linear least
squares.

Linear least squares problems can be solved efficiently on computers using matrix operations
such as matrix factorization. Least squares is most known for its role in the solution to linear
regression models, but also plays a wider role in a range of machine learning algorithms. In
order to understand and interpret these algorithms, you must understand how to use matrix
factorization methods to solve least squares problems.

2.7 One More Reason

If I could give one more reason, it would be: because it is fun. Seriously. Learning linear algebra,
at least the way I teach it with practical examples and executable code, is a lot of fun. Once you

2.8. Summary 10

can see how the operations work on real data, it is hard to avoid developing a strong intuition
for the methods. I am not alone in thinking that linear algebra can be fun if approached in the
right way:

Learning linear algebra can also be a lot of fun. Readers will experience knowledge
buzz as they learn about the connections between concepts, and it’s not uncommon
to experience mind-expanding moments while studying this subject.

— Page ix, No Bullshit Guide To Linear Algebra, 2017.

Why do you want to learn linear algebra? Let me know.

2.8 Summary

In this chapter, you discovered why, as a machine learning practitioner, you should deepen your
understanding of linear algebra. Specifically, you learned:

� Not everyone should learn linear algebra, that it depends where you are in your process of
learning machine learning.

� 5 Reasons why a deeper understanding of linear algebra is required for intermediate
machine learning practitioners.

� That linear algebra can be fun if approached in the right way.

2.8.1 Next

In the next chapter you will discover 10 concrete examples of machine learning concepts and
methods that require an understanding of linear algebra.

Chapter 3

Examples of Linear Algebra in
Machine Learning

Linear algebra is a sub-field of mathematics concerned with vectors, matrices and linear
transforms. It is a key foundation to the field of machine learning from notations used to
describe the operation of algorithms, to the implementation of algorithms in code. Although
linear algebra is integral to the field of machine learning, the tight relationship is often left
unexplained or explained using abstract concepts such as vector spaces or specific matrix
operations. In this chapter, you will discover 10 common examples of machine learning that
you may be familiar with that use, require and are really best understood using linear algebra.
After reading this chapter, you will know:

� The use if linear algebra structures when working with data such as tabular datasets and
images.

� Linear algebra concepts when working with data preparation such as one hot encoding
and dimensionality reduction.

� The in-grained use of linear algebra notation and methods in sub-fields such as deep
learning, natural language processing and recommender systems.

Let’s get started.

3.1 Overview

In this chapter, we will review 10 obvious and concrete examples of linear algebra in machine
learning. I tried to pick examples that you may be familiar with or have even worked with
before. They are:

1. Dataset and Data Files

2. Images and Photographs

3. One Hot Encoding

4. Linear Regression

11

3.2. Dataset and Data Files 12

5. Regularization

6. Principal Component Analysis

7. Singular-Value Decomposition

8. Latent Semantic Analysis

9. Recommender Systems

10. Deep Learning

Do you have your own favorite example of linear algebra in machine learning? Let me know.

3.2 Dataset and Data Files

In machine learning, you fit a model on a dataset. This is the table like set of numbers where
each row represents an observation and each column represents a feature of the observation. For
example, below is a snippet of the Iris flowers dataset1:

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

...

Listing 3.1: Sample output of the iris flowers dataset.

This data is in fact a matrix, a key data structure in linear algebra. Further, when you
split the data into inputs and outputs to fit a supervised machine learning model, such as the
measurements and the flower species, you have a matrix (X) and a vector (y). The vector
is another key data structure in linear algebra. Each row has the same length, i.e. the same
number of columns, therefore we can say that the data is vectorized where rows can be provided
to a model one at a time or in batch and the model can be pre-configured to expect rows of a
fixed width.

3.3 Images and Photographs

Perhaps you are more used to working with images or photographs in computer vision applications.
Each image that you work with is itself a table structure with a width and height and one pixel
value in each cell for black and white images or 3 pixel values in each cell for a color image. A
photo is yet another example of a matrix from linear algebra. Operations on the image, such
as cropping, scaling, shearing and so on are all described using the notation and operations of
linear algebra.

1http://archive.ics.uci.edu/ml/datasets/Iris

http://archive.ics.uci.edu/ml/datasets/Iris

3.4. One Hot Encoding 13

3.4 One Hot Encoding

Sometimes you work with categorical data in machine learning. Perhaps the class labels for
classification problems, or perhaps categorical input variables. It is common to encode categorical
variables to make their easier to work with and learn by some techniques. A popular encoding
for categorical variables is the one hot encoding. A one hot encoding is where a table is created
to represent the variable with one column for each category and a row for each example in the
dataset. A check or one-value is added in the column for the categorical value for a given row,
and a zero-value is added to all other columns. For example, the variable color variable with
the 3 rows:

red

green

blue

...

Listing 3.2: Example of a categorical variable.

Might be encoded as:

red, green, blue

1, 0, 0

0, 1, 0

0, 0, 1

...

Listing 3.3: Example of a one hot encoded categorical variable.

Each row is encoded as a binary vector, a vector with zero or one values and this is an
example of a sparse representation, a whole sub-field of linear algebra.

3.5 Linear Regression

Linear regression is an old method from statistics for describing the relationships between
variables. It is often used in machine learning for predicting numerical values in simpler
regression problems. There are many ways to describe and solve the linear regression problem,
i.e. finding a set of coefficients that when multiplied by each of the input variables and added
together results in the best prediction of the output variable. If you have used a machine
learning tool or library, the most common way of solving linear regression is via a least squares
optimization that is solved using matrix factorization methods from linear regression, such as
an LU decomposition or an singular-value decomposition or SVD. Even the common way of
summarizing the linear regression equation uses linear algebra notation:

y = A · b (3.1)

Where y is the output variable A is the dataset and b are the model coefficients.

3.6 Regularization

In applied machine learning, we often seek the simplest possible models that achieve the best
skill on our problem. Simpler models are often better at generalizing from specific examples

3.7. Principal Component Analysis 14

to unseen data. In many methods that involve coefficients, such as regression methods and
artificial neural networks, simpler models are often characterized by models that have smaller
coefficient values. A technique that is often used to encourage a model to minimize the size
of coefficients while it is being fit on data is called regularization. Common implementations
include the L2 and L1 forms of regularization. Both of these forms of regularization are in fact
a measure of the magnitude or length of the coefficients as a vector and are methods lifted
directly from linear algebra called the vector norm.

3.7 Principal Component Analysis

Often a dataset has many columns, perhaps tens, hundreds, thousands or more. Modeling data
with many features is challenging, and models built from data that include irrelevant features
are often less skillful than models trained from the most relevant data. It is hard to know which
features of the data are relevant and which are not. Methods for automatically reducing the
number of columns of a dataset are called dimensionality reduction, and perhaps the most
popular is method is called the principal component analysis or PCA for short. This method is
used in machine learning to create projections of high-dimensional data for both visualization
and for training models. The core of the PCA method is a matrix factorization method from
linear algebra. The eigendecomposition can be used and more robust implementations may use
the singular-value decomposition or SVD.

3.8 Singular-Value Decomposition

Another popular dimensionality reduction method is the singular-value decomposition method
or SVD for short. As mentioned and as the name of the method suggests, it is a matrix
factorization method from the field of linear algebra. It has wide use in linear algebra and can
be used directly in applications such as feature selection, visualization, noise reduction and
more. We will see two more cases below of using the SVD in machine learning.

3.9 Latent Semantic Analysis

In the sub-field of machine learning for working with text data called natural language processing,
it is common to represent documents as large matrices of word occurrences. For example, the
columns of the matrix may be the known words in the vocabulary and rows may be sentences,
paragraphs, pages or documents of text with cells in the matrix marked as the count or frequency
of the number of times the word occurred. This is a sparse matrix representation of the text.
Matrix factorization methods such as the singular-value decomposition can be applied to this
sparse matrix which has the effect of distilling the representation down to its most relevant
essence. Documents processed in thus way are much easier to compare, query and use as the
basis for a supervised machine learning model. This form of data preparation is called Latent
Semantic Analysis or LSA for short, and is also known by the name Latent Semantic Indexing
or LSI.

3.10. Recommender Systems 15

3.10 Recommender Systems

Predictive modeling problems that involve the recommendation of products are called recom-
mender systems, a sub-field of machine learning. Examples include the recommendation of
books based on previous purchases and purchases by customers like you on Amazon, and the
recommendation of movies and TV shows to watch based on your viewing history and viewing
history of subscribers like you on Netflix. The development of recommender systems is primarily
concerned with linear algebra methods. A simple example is in the calculation of the similarity
between sparse customer behavior vectors using distance measures such as Euclidean distance
or dot products. Matrix factorization methods like the singular-value decomposition are used
widely in recommender systems to distill item and user data to their essence for querying and
searching and comparison.

3.11 Deep Learning

Artificial neural networks are nonlinear machine learning algorithms that are inspired by elements
of the information processing in the brain and have proven effective at a range of problems not
least predictive modeling. Deep learning is the recent resurged use of artificial neural networks
with newer methods and faster hardware that allow for the development and training of larger
and deeper (more layers) networks on very large datasets. Deep learning methods are routinely
achieve state-of-the-art results on a range of challenging problems such as machine translation,
photo captioning, speech recognition and much more.

At their core, the execution of neural networks involves linear algebra data structures
multiplied and added together. Scaled up to multiple dimensions, deep learning methods work
with vectors, matrices and even tensors of inputs and coefficients, where a tensor is a matrix
with more than two dimensions. Linear algebra is central to the description of deep learning
methods via matrix notation to the implementation of deep learning methods such as Google’s
TensorFlow Python library that has the word ”tensor” in its name.

3.12 Summary

In this chapter, you discovered 10 common examples of machine learning that you may be
familiar with that use and require linear algebra. Specifically, you learned:

� The use of linear algebra structures when working with data such as tabular datasets and
images.

� Linear algebra concepts when working with data preparation such as one hot encoding
and dimensionality reduction.

� The in-grained use of linear algebra notation and methods in sub-fields such as deep
learning, natural language processing and recommender systems.

3.12.1 Next

This is the end of the first part, in the next part you will discover how to manipulate arrays of
data in Python using NumPy.

Part III

NumPy

16

Chapter 4

Introduction to NumPy Arrays

Arrays are the main data structure used in machine learning. In Python, arrays from the NumPy
library, called N-dimensional arrays or the ndarray, are used as the primary data structure for
representing data. In this tutorial, you will discover the N-dimensional array in NumPy for
representing numerical and manipulating data in Python. After completing this tutorial, you
will know:

� What the ndarray is and how to create and inspect an array in Python.

� Key functions for creating new empty arrays and arrays with default values.

� How to combine existing arrays to create new arrays.

Let’s get started.

4.1 Tutorial Overview

This tutorial is divided into 3 parts; they are:

1. NumPy N-dimensional Array

2. Functions to Create Arrays

3. Combining Arrays

4.2 NumPy N-dimensional Array

NumPy is a Python library that can be used for scientific and numerical applications and is the
tool to use for linear algebra operations. The main data structure in NumPy is the ndarray,
which is a shorthand name for N-dimensional array. When working with NumPy, data in an
ndarray is simply referred to as an array. It is a fixed-sized array in memory that contains data
of the same type, such as integers or floating point values.

The data type supported by an array can be accessed via the dtype attribute on the array.
The dimensions of an array can be accessed via the shape attribute that returns a tuple
describing the length of each dimension. There are a host of other attributes. A simple way

17

4.3. Functions to Create Arrays 18

to create an array from data or simple Python data structures like a list is to use the array()

function. The example below creates a Python list of 3 floating point values, then creates an
ndarray from the list and access the arrays’ shape and data type.

create array

from numpy import array

create array

l = [1.0, 2.0, 3.0]

a = array(l)

display array

print(a)

display array shape

print(a.shape)

display array data type

print(a.dtype)

Listing 4.1: Example of creating an array with the array() function.

Running the example prints the contents of the ndarray, the shape, which is a one-
dimensional array with 3 elements, and the data type, which is a 64-bit floating point.

[1. 2. 3.]

(3,)

float64

Listing 4.2: Sample output of creating an array with the array() function.

4.3 Functions to Create Arrays

There are more convenience functions for creating fixed-sized arrays that you may encounter or
be required to use. Let’s look at just a few.

4.3.1 Empty

The empty() function will create a new array of the specified shape. The argument to the
function is an array or tuple that specifies the length of each dimension of the array to create.
The values or content of the created array will be random and will need to be assigned before
use. The example below creates an empty 3× 3 two-dimensional array.

create empty array

from numpy import empty

a = empty([3,3])

print(a)

Listing 4.3: Example of creating an array with the empty() function.

Running the example prints the content of the empty array. Your specific array contents
will vary.

[[0.00000000e+000 0.00000000e+000 2.20802703e-314]

[2.20803350e-314 2.20803353e-314 2.20803356e-314]

[2.20803359e-314 2.20803362e-314 2.20803366e-314]]

Listing 4.4: Sample output of creating an array with the empty() function.

4.4. Combining Arrays 19

4.3.2 Zeros

The zeros() function will create a new array of the specified size with the contents filled with
zero values. The argument to the function is an array or tuple that specifies the length of each
dimension of the array to create. The example below creates a 3× 5 zero two-dimensional array.

create zero array

from numpy import zeros

a = zeros([3,5])

print(a)

Listing 4.5: Example of creating an array with the zeros() function.

Running the example prints the contents of the created zero array.

[[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0.]]

Listing 4.6: Sample output of creating an array with the zeros() function.

4.3.3 Ones

The ones() function will create a new array of the specified size with the contents filled with
one values. The argument to the function is an array or tuple that specifies the length of each
dimension of the array to create. The example below creates a 5-element one-dimensional array.

create one array

from numpy import ones

a = ones([5])

print(a)

Listing 4.7: Example of creating an array with the ones() function.

Running the example prints the contents of the created ones array.

[1. 1. 1. 1. 1.]

Listing 4.8: Sample output of creating an array with the ones() function.

4.4 Combining Arrays

NumPy provides many functions to create new arrays from existing arrays. Let’s look at two of
the most popular functions you may need or encounter.

4.4.1 Vertical Stack

Given two or more existing arrays, you can stack them vertically using the vstack() function.
For example, given two one-dimensional arrays, you can create a new two-dimensional array
with two rows by vertically stacking them. This is demonstrated in the example below.

4.4. Combining Arrays 20

create array with vstack

from numpy import array

from numpy import vstack

create first array

a1 = array([1,2,3])

print(a1)

create second array

a2 = array([4,5,6])

print(a2)

vertical stack

a3 = vstack((a1, a2))

print(a3)

print(a3.shape)

Listing 4.9: Example of creating an array from other arrays using the vstack() function.

Running the example first prints the two separately defined one-dimensional arrays. The
arrays are vertically stacked resulting in a new 2× 3 array, the contents and shape of which are
printed.

[1 2 3]

[4 5 6]

[[1 2 3]

[4 5 6]]

(2, 3)

Listing 4.10: Sample output of creating an array from other arrays with the vstack() function.

4.4.2 Horizontal Stack

Given two or more existing arrays, you can stack them horizontally using the hstack() function.
For example, given two one-dimensional arrays, you can create a new one-dimensional array or
one row with the columns of the first and second arrays concatenated. This is demonstrated in
the example below.

create array with hstack

from numpy import array

from numpy import hstack

create first array

a1 = array([1,2,3])

print(a1)

create second array

a2 = array([4,5,6])

print(a2)

create horizontal stack

a3 = hstack((a1, a2))

print(a3)

print(a3.shape)

Listing 4.11: Example of creating an array from other arrays using the hstack() function.

4.5. Extensions 21

Running the example first prints the two separately defined one-dimensional arrays. The
arrays are then horizontally stacked resulting in a new one-dimensional array with 6 elements,
the contents and shape of which are printed.

[1 2 3]

[4 5 6]

[1 2 3 4 5 6]

(6,)

Listing 4.12: Sample output of creating an array from other arrays with the hstack() function.

4.5 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Experiment with the different ways of creating arrays to your own sizes or with new data.

� Locate and develop an example for 3 additional NumPy functions for creating arrays.

� Locate and develop an example for 3 additional NumPy functions for combining arrays.

If you explore any of these extensions, I’d love to know.

4.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

4.6.1 Books

� Python for Data Analysis, 2017.
http://amzn.to/2B1sfXi

� Elegant SciPy, 2017.
http://amzn.to/2yujXnT

� Guide to NumPy, 2015.
http://amzn.to/2j3kEzd

4.6.2 References

� NumPy Reference.
https://docs.scipy.org/doc/numpy-1.13.0/reference/

� The N-dimensional array.
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html

� Array creation routines.
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.array-creation.html

http://amzn.to/2B1sfXi
http://amzn.to/2yujXnT
http://amzn.to/2j3kEzd
https://docs.scipy.org/doc/numpy-1.13.0/reference/
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.array-creation.html

4.7. Summary 22

4.6.3 API

� numpy.array() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html

� numpy.empty() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.empty.html

� numpy.zeros() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.zeros.html

� numpy.ones() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ones.html

� numpy.vstack() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.vstack.html

� numpy.hstack() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.hstack.html

4.7 Summary

In this tutorial, you discovered the N-dimensional array in NumPy for representing numerical
and manipulating data in Python. Specifically, you learned:

� What the ndarray is and how to create and inspect an array in Python.

� Key functions for creating new empty arrays and arrays with default values.

� How to combine existing arrays to create new arrays.

4.7.1 Next

In the next chapter you will discover how to slice, index, and reshape NumPy arrays.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.empty.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.zeros.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ones.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.vstack.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.hstack.html

Chapter 5

Index, Slice and Reshape NumPy
Arrays

Machine learning data is represented as arrays. In Python, data is almost universally represented
as NumPy arrays. If you are new to Python, you may be confused by some of the Pythonic
ways of accessing data, such as negative indexing and array slicing. In this tutorial, you will
discover how to manipulate and access your data correctly in NumPy arrays. After completing
this tutorial, you will know:

� How to convert your list data to NumPy arrays.

� How to access data using Pythonic indexing and slicing.

� How to resize your data to meet the expectations of some machine learning APIs.

Let’s get started.

5.1 Tutorial Overview

This tutorial is divided into 4 parts; they are:

1. From List to Arrays

2. Array Indexing

3. Array Slicing

4. Array Reshaping

5.2 From List to Arrays

In general, I recommend loading your data from file using Pandas or even NumPy functions.
This section assumes you have loaded or generated your data by other means and it is now
represented using Python lists. Let’s look at converting your data in lists to NumPy arrays.

23

5.2. From List to Arrays 24

5.2.1 One-Dimensional List to Array

You may load your data or generate your data and have access to it as a list. You can convert a
one-dimensional list of data to an array by calling the array() NumPy function.

create one-dimensional array

from numpy import array

list of data

data = [11, 22, 33, 44, 55]

array of data

data = array(data)

print(data)

print(type(data))

Listing 5.1: Example of creating one-dimensional array.

Running the example converts the one-dimensional list to a NumPy array.

[11 22 33 44 55]

<class 'numpy.ndarray'>

Listing 5.2: Sample output of creating a one-dimensional array.

5.2.2 Two-Dimensional List of Lists to Array

It is more likely in machine learning that you will have two-dimensional data. That is a table of
data where each row represents a new observation and each column a new feature. Perhaps you
generated the data or loaded it using custom code and now you have a list of lists. Each list
represents a new observation. You can convert your list of lists to a NumPy array the same way
as above, by calling the array() function.

create two-dimensional array

from numpy import array

list of data

data = [[11, 22],

[33, 44],

[55, 66]]

array of data

data = array(data)

print(data)

print(type(data))

Listing 5.3: Example of creating two-dimensional array.

Running the example shows the data successfully converted.

[[11 22]

[33 44]

[55 66]]

<class 'numpy.ndarray'>

Listing 5.4: Sample output of creating a two-dimensional array.

5.3. Array Indexing 25

5.3 Array Indexing

Once your data is represented using a NumPy array, you can access it using indexing. Let’s
look at some examples of accessing data via indexing.

5.3.1 One-Dimensional Indexing

Generally, indexing works just like you would expect from your experience with other program-
ming languages, like Java, C#, and C++. For example, you can access elements using the
bracket operator [] specifying the zero-offset index for the value to retrieve.

index a one-dimensional array

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

index data

print(data[0])

print(data[4])

Listing 5.5: Example of indexing a one-dimensional array.

Running the example prints the first and last values in the array.

11

55

Listing 5.6: Sample output from indexing a one-dimensional array.

Specifying integers too large for the bound of the array will cause an error.

index array out of bounds

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

index data

print(data[5])

Listing 5.7: Example of an error when indexing a one-dimensional array.

Running the example prints the following error:

IndexError: index 5 is out of bounds for axis 0 with size 5

Listing 5.8: Sample error output from indexing a one-dimensional array.

One key difference is that you can use negative indexes to retrieve values offset from the end
of the array. For example, the index -1 refers to the last item in the array. The index -2 returns
the second last item all the way back to -5 for the first item in the current example.

negative array indexing

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

index data

print(data[-1])

print(data[-5])

Listing 5.9: Example of negative indexing a one-dimensional array.

5.3. Array Indexing 26

Running the example prints the last and first items in the array.

55

11

Listing 5.10: Sample output from negative indexing a one-dimensional array.

5.3.2 Two-Dimensional Indexing

Indexing two-dimensional data is similar to indexing one-dimensional data, except that a comma
is used to separate the index for each dimension.

data[0,0]

Listing 5.11: Example of indexing a two-dimensional array in Python.

This is different from C-based languages where a separate bracket operator is used for each
dimension.

data[0][0]

Listing 5.12: Example of indexing a two-dimensional array in C-like languages.

For example, we can access the first row and the first column as follows:

index two-dimensional array

from numpy import array

define array

data = array([

[11, 22],

[33, 44],

[55, 66]])

index data

print(data[0,0])

Listing 5.13: Example of indexing a two-dimensional array.

Running the example prints the first item in the dataset.

11

Listing 5.14: Sample output from indexing a two-dimensional array.

If we are interested in all items in the first row, we could leave the second dimension index
empty, for example:

index row of two-dimensional array

from numpy import array

define array

data = array([

[11, 22],

[33, 44],

[55, 66]])

index data

print(data[0,])

Listing 5.15: Example of indexing the first column of a two-dimensional array.

This prints the first row of data.

5.4. Array Slicing 27

[11 22]

Listing 5.16: Sample output from indexing the first column of a two-dimensional array.

5.4 Array Slicing

So far, so good; creating and indexing arrays looks familiar. Now we come to array slicing, and
this is one feature that causes problems for beginners to Python and NumPy arrays. Structures
like lists and NumPy arrays can be sliced. This means that a subsequence of the structure
can be indexed and retrieved. This is most useful in machine learning when specifying input
variables and output variables, or splitting training rows from testing rows. Slicing is specified
using the colon operator : with a from and to index before and after the column respectively.
The slice extends from the from index and ends one item before the to index.

data[from:to]

Listing 5.17: Example of the syntax of array slicing.

5.4.1 One-Dimensional Slicing

You can access all data in an array dimension by specifying the slice ‘:’ with no indexes.

slice a one-dimensional array

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

print(data[:])

Listing 5.18: Example of slicing a one-dimensional array.

Running the example prints all elements in the array.

[11 22 33 44 55]

Listing 5.19: Sample output from slicing a one-dimensional array.

The first item of the array can be sliced by specifying a slice that starts at index 0 and ends
at index 1 (one item before the to index).

slice a subset of a one-dimensional array

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

print(data[0:1])

Listing 5.20: Example of slicing a subset of a one-dimensional array.

Running the example returns a sub-array with the first element.

[11]

Listing 5.21: Sample output from slicing a subset of a one-dimensional array.

5.4. Array Slicing 28

We can also use negative indexes in slices. For example, we can slice the last two items in
the list by starting the slice at -2 (the second last item) and not specifying a to index; that
takes the slice to the end of the dimension.

negative slicing of a one-dimensional array

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

print(data[-2:])

Listing 5.22: Example of slicing with a negative index on a one-dimensional array.

Running the example returns a sub-array with the last two items only.

[44 55]

Listing 5.23: Sample output from slicing with a negative index on a one-dimensional array.

5.4.2 Two-Dimensional Slicing

Let’s look at the two examples of two-dimensional slicing you are most likely to use in machine
learning.

Split Input and Output Features

It is common to split your loaded data into input variables (X) and the output variable (y). We
can do this by slicing all rows and all columns up to, but before the last column, then separately
indexing the last column. For the input features, we can select all rows and all columns except
the last one by specifying : for in the rows index, and :-1 in the columns index.

X = [:, :-1]

Listing 5.24: Example of slicing input variables.

For the output column, we can select all rows again using : and index just the last column
by specifying the -1 index.

y = [:, -1]

Listing 5.25: Example of slicing the output variable.

Putting all of this together, we can separate a 3-column 2D dataset into input and output
data as follows:

split input and output data

from numpy import array

define array

data = array([

[11, 22, 33],

[44, 55, 66],

[77, 88, 99]])

separate data

X, y = data[:, :-1], data[:, -1]

print(X)

print(y)

Listing 5.26: Example of slicing a dataset into input and output variables.

5.4. Array Slicing 29

Running the example prints the separated X and y elements. Note that X is a 2D array and
y is a 1D array.

[[11 22]

[44 55]

[77 88]]

[33 66 99]

Listing 5.27: Sample output slicing a dataset into input and output variables.

Split Train and Test Rows

It is common to split a loaded dataset into separate train and test sets. This is a splitting of
rows where some portion will be used to train the model and the remaining portion will be used
to estimate the skill of the trained model. This would involve slicing all columns by specifying :

in the second dimension index. The training dataset would be all rows from the beginning to
the split point.

train = data[:split, :]

Listing 5.28: Example of slicing a train set from a dataset.

The test dataset would be all rows starting from the split point to the end of the dimension.

test = data[split:, :]

Listing 5.29: Example of slicing a test set from a dataset.

Putting all of this together, we can split the dataset at the contrived split point of 2.

split train and test data

from numpy import array

define array

data = array([

[11, 22, 33],

[44, 55, 66],

[77, 88, 99]])

separate data

split = 2

train,test = data[:split,:],data[split:,:]

print(train)

print(test)

Listing 5.30: Example of slicing a dataset into train and test subsets.

Running the example selects the first two rows for training and the last row for the test set.

[[11 22 33]

[44 55 66]]

[[77 88 99]]

Listing 5.31: Sample output slicing a dataset into train and test subsets.

5.5. Array Reshaping 30

5.5 Array Reshaping

After slicing your data, you may need to reshape it. For example, some libraries, such as
scikit-learn, may require that a one-dimensional array of output variables (y) be shaped as a
two-dimensional array with one column and outcomes for each column. Some algorithms, like
the Long Short-Term Memory recurrent neural network in Keras, require input to be specified
as a three-dimensional array comprised of samples, timesteps, and features. It is important to
know how to reshape your NumPy arrays so that your data meets the expectation of specific
Python libraries. We will look at these two examples.

5.5.1 Data Shape

NumPy arrays have a shape attribute that returns a tuple of the length of each dimension of
the array. For example:

shape of one-dimensional array

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

print(data.shape)

Listing 5.32: Example of accessing shape for a one-dimensional array.

Running the example prints a tuple for the one dimension.

(5,)

Listing 5.33: Sample output shape for a one-dimensional array.

A tuple with two lengths is returned for a two-dimensional array.

shape of a two-dimensional array

from numpy import array

list of data

data = [[11, 22],

[33, 44],

[55, 66]]

array of data

data = array(data)

print(data.shape)

Listing 5.34: Example of accessing shape for a two-dimensional array.

Running the example returns a tuple with the number of rows and columns.

(3, 2)

Listing 5.35: Sample output shape for a two-dimensional array.

You can use the size of your array dimensions in the shape dimension, such as specifying
parameters. The elements of the tuple can be accessed just like an array, with the 0th index for
the number of rows and the 1st index for the number of columns. For example:

row and column shape of two-dimensional array

from numpy import array

list of data

data = [[11, 22],

5.5. Array Reshaping 31

[33, 44],

[55, 66]]

array of data

data = array(data)

print('Rows: %d' % data.shape[0])

print('Cols: %d' % data.shape[1])

Listing 5.36: Example of accessing shape for a two-dimensional array in terms of rows and
columns.

Running the example accesses the specific size of each dimension.

Rows: 3

Cols: 2

Listing 5.37: Sample output shape for a two-dimensional array in terms of rows and columns.

5.5.2 Reshape 1D to 2D Array

It is common to need to reshape a one-dimensional array into a two-dimensional array with
one column and multiple arrays. NumPy provides the reshape() function on the NumPy array
object that can be used to reshape the data. The reshape() function takes a single argument
that specifies the new shape of the array. In the case of reshaping a one-dimensional array into
a two-dimensional array with one column, the tuple would be the shape of the array as the first
dimension (data.shape[0]) and 1 for the second dimension.

data = data.reshape((data.shape[0], 1))

Listing 5.38: Example the reshape() function for reshaping from 1D to 2D data.

Putting this all together, we get the following worked example.

reshape 1D array to 2D

from numpy import array

define array

data = array([11, 22, 33, 44, 55])

print(data.shape)

reshape

data = data.reshape((data.shape[0], 1))

print(data.shape)

Listing 5.39: Example of changing the shape of a one-dimensional array with the reshape()

function.

Running the example prints the shape of the one-dimensional array, reshapes the array to
have 5 rows with 1 column, then prints this new shape.

(5,)

(5, 1)

Listing 5.40: Sample output of changing the shape of a one-dimensional array with the reshape()
function.

5.6. Extensions 32

5.5.3 Reshape 2D to 3D Array

It is common to need to reshape two-dimensional data where each row represents a sequence
into a three-dimensional array for algorithms that expect multiple samples of one or more time
steps and one or more features. A good example is the LSTM recurrent neural network model
in the Keras deep learning library. The reshape function can be used directly, specifying the
new dimensionality. This is clear with an example where each sequence has multiple time steps
with one observation (feature) at each time step. We can use the sizes in the shape attribute on
the array to specify the number of samples (rows) and columns (time steps) and fix the number
of features at 1.

data.reshape((data.shape[0], data.shape[1], 1))

Listing 5.41: Example the reshape() function for reshaping from 2D to 3D data.

Putting this all together, we get the following worked example.

reshape 2D array to 3D

from numpy import array

list of data

data = [[11, 22],

[33, 44],

[55, 66]]

array of data

data = array(data)

print(data.shape)

reshape

data = data.reshape((data.shape[0], data.shape[1], 1))

print(data.shape)

Listing 5.42: Example of changing the shape of a two-dimensional array with the reshape()

function.

Running the example first prints the size of each dimension in the 2D array, reshapes the
array, then summarizes the shape of the new 3D array.

(3, 2)

(3, 2, 1)

Listing 5.43: Sample output of changing the shape of a two-dimensional array with the reshape()
function.

5.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Develop one example of indexing, slicing and reshaping your own small data arrays.

� Load a small real dataset from CSV file and split it into input and output elements

� Load a small real dataset from CSV file and split it into train and test elements.

If you explore any of these extensions, I’d love to know.

5.7. Further Reading 33

5.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

5.7.1 Books

� Python for Data Analysis, 2017.
http://amzn.to/2B1sfXi

� Elegant SciPy, 2017.
http://amzn.to/2yujXnT

� Guide to NumPy, 2015.
http://amzn.to/2j3kEzd

5.7.2 References

� NumPy Reference.
https://docs.scipy.org/doc/numpy-1.13.0/reference/

� The N-dimensional array.
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html

� Array creation routines.
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.array-creation.html

� NumPy Indexing.
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.indexing.html

� SciPy Indexing.
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

� Indexing routines.
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.indexing.html

5.7.3 API

� numpy.array() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html

� numpy.reshape() API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

5.8 Summary

In this tutorial, you discovered how to access and reshape data in NumPy arrays with Python.
Specifically, you learned:

� How to convert your list data to NumPy arrays.

http://amzn.to/2B1sfXi
http://amzn.to/2yujXnT
http://amzn.to/2j3kEzd
https://docs.scipy.org/doc/numpy-1.13.0/reference/
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.indexing.html
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.indexing.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

5.8. Summary 34

� How to access data using Pythonic indexing and slicing.

� How to resize your data to meet the expectations of some machine learning APIs.

5.8.1 Next

In the next chapter you will discover array broadcasting and the rules that govern it in Python.

Chapter 6

NumPy Array Broadcasting

Arrays with different sizes cannot be added, subtracted, or generally be used in arithmetic. A
way to overcome this is to duplicate the smaller array so that it has the dimensionality and
size as the larger array. This is called array broadcasting and is available in NumPy when
performing array arithmetic, which can greatly reduce and simplify your code. In this tutorial,
you will discover the concept of array broadcasting and how to implement it in NumPy. After
completing this tutorial, you will know:

� The problem of arithmetic with arrays with different sizes.

� The solution of broadcasting and common examples in one and two dimensions.

� The rule of array broadcasting and when broadcasting fails.

Let’s get started.

6.1 Tutorial Overview

This tutorial is divided into 4 parts; they are:

1. Limitation with Array Arithmetic

2. Array Broadcasting

3. Broadcasting in NumPy

4. Limitations of Broadcasting

6.2 Limitation with Array Arithmetic

You can perform arithmetic directly on NumPy arrays, such as addition and subtraction. For
example, two arrays can be added together to create a new array where the values at each
index are added together. For example, an array a can be defined as [1, 2, 3] and array b can be
defined as [1, 2, 3] and adding together will result in a new array with the values [2, 4, 6].

35

6.3. Array Broadcasting 36

a = [1, 2, 3]

b = [1, 2, 3]

c = a + b

c = [1 + 1, 2 + 2, 3 + 3]

Strictly, arithmetic may only be performed on arrays that have the same dimensions and
dimensions with the same size. This means that a one-dimensional array with the length of
10 can only perform arithmetic with another one-dimensional array with the length 10. This
limitation on array arithmetic is quite limiting indeed. Thankfully, NumPy provides a built-in
workaround to allow arithmetic between arrays with differing sizes.

6.3 Array Broadcasting

Broadcasting is the name given to the method that NumPy uses to allow array arithmetic
between arrays with a different shape or size. Although the technique was developed for NumPy,
it has also been adopted more broadly in other numerical computational libraries, such as
Theano, TensorFlow, and Octave. Broadcasting solves the problem of arithmetic between arrays
of differing shapes by in effect replicating the smaller array along the last mismatched dimension.

Vectors are built from components, which are ordinary numbers. You can think of
a vector as a list of numbers, and vector algebra as operations performed on the
numbers in the list.

— Broadcasting, SciPy.org.

NumPy does not actually duplicate the smaller array; instead, it makes memory and
computationally efficient use of existing structures in memory that in effect achieve the same
result. The concept has also permeated linear algebra notation to simplify the explanation of
simple operations.

In the context of deep learning, we also use some less conventional notation. We
allow the addition of matrix and a vector, yielding another matrix: C = A+ b, where
Ci,j = Ai,j + bj. In other words, the vector b is added to each row of the matrix.
This shorthand eliminates the need to define a matrix with b copied into each row
before doing the addition. This implicit copying of b to many locations is called
broadcasting.

— Page 34, Deep Learning, 2016.

6.4 Broadcasting in NumPy

We can make broadcasting concrete by looking at three examples in NumPy. The examples in
this section are not exhaustive, but instead are common to the types of broadcasting you may
see or implement.

6.4. Broadcasting in NumPy 37

6.4.1 Scalar and One-Dimensional Array

A single value or scalar can be used in arithmetic with a one-dimensional array. For example,
we can imagine a one-dimensional array a with three values [a1, a2, a3] added to a scalar b.

a = [a1, a2, a3]

b

The scalar will need to be broadcast across the one-dimensional array by duplicating the
value it 2 more times.

b = [b1, b2, b3]

The two one-dimensional arrays can then be added directly.

c = a + b

c = [a1 + b1, a2 + b2, a3 + b3]

The example below demonstrates this in NumPy.

broadcast scalar to one-dimensional array

from numpy import array

define array

a = array([1, 2, 3])

print(a)

define scalar

b = 2

print(b)

broadcast

c = a + b

print(c)

Listing 6.1: Example of broadcasting a scalar to a one-dimensional array in NumPy.

Running the example first prints the defined one-dimensional array, then the scalar, followed
by the result where the scalar is added to each value in the array.

[1 2 3]

2

[3 4 5]

Listing 6.2: Results from broadcasting a scalar to a one-dimensional array in NumPy.

6.4.2 Scalar and Two-Dimensional Array

A scalar value can be used in arithmetic with a two-dimensional array. For example, we can
imagine a two-dimensional array A with 2 rows and 3 columns added to the scalar b.

A =

(
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

)
(6.1)

The scalar will need to be broadcast across each row of the two-dimensional array by
duplicating it 5 more times.

B =

(
b1,1 b1,2 b1,3
b2,1 b2,2 b2,3

)
(6.2)

6.4. Broadcasting in NumPy 38

The two two-dimensional arrays can then be added directly.

C = A+B (6.3)

C =

(
a1,1 + b1,1 a1,2 + b1,2 a1,3 + b1,3
a2,1 + b2,1 a2,2 + b2,2 a2,3 + b2,3

)
(6.4)

The example below demonstrates this in NumPy.

broadcast scalar to two-dimensional array

from numpy import array

define array

A = array([

[1, 2, 3],

[1, 2, 3]])

print(A)

define scalar

b = 2

print(b)

broadcast

C = A + b

print(C)

Listing 6.3: Example of broadcasting a scalar to a two-dimensional array in NumPy.

Running the example first prints the defined two-dimensional array, then the scalar, then
the result of the addition with the value 2 added to each value in the array.

[[1 2 3]

[1 2 3]]

2

[[3 4 5]

[3 4 5]]

Listing 6.4: Results from broadcasting a scalar to a two-dimensional array in NumPy.

6.4.3 One-Dimensional and Two-Dimensional Arrays

A one-dimensional array can be used in arithmetic with a two-dimensional array. For example,
we can imagine a two-dimensional array A with 2 rows and 3 columns added to a one-dimensional
array b with 3 values.

A =

(
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

)
(6.5)

b =
(
b1 b2 b3

)
(6.6)

The one-dimensional array is broadcast across each row of the two-dimensional array by
creating a second copy to result in a new two-dimensional array B.

B =

(
b1,1 b1,2 b1,3
b2,1 b2,2 b2,3

)
(6.7)

6.5. Limitations of Broadcasting 39

The two two-dimensional arrays can then be added directly.

C = A+B (6.8)

C =

(
a1,1 + b1,1 a1,2 + b1,2 a1,3 + b1,3
a2,1 + b2,1 a2,2 + b2,2 a2,3 + b2,3

)
(6.9)

The example below demonstrates this in NumPy.

broadcast one-dimensional array to two-dimensional array

from numpy import array

define two-dimensional array

A = array([

[1, 2, 3],

[1, 2, 3]])

print(A)

define one-dimensional array

b = array([1, 2, 3])

print(b)

broadcast

C = A + b

print(C)

Listing 6.5: Example of broadcasting a one-dimensional array to a two-dimensional array in
NumPy.

Running the example first prints the defined two-dimensional array, then the defined one-
dimensional array, followed by the result C where in effect each value in the two-dimensional
array is doubled.

[[1 2 3]

[1 2 3]]

[1 2 3]

[[2 4 6]

[2 4 6]]

Listing 6.6: Results from broadcasting a one-dimensional to a two-dimensional array in NumPy.

6.5 Limitations of Broadcasting

Broadcasting is a handy shortcut that proves very useful in practice when working with NumPy
arrays. That being said, it does not work for all cases, and in fact imposes a strict rule that
must be satisfied for broadcasting to be performed. Arithmetic, including broadcasting, can
only be performed when the shape of each dimension in the arrays are equal or one has the
dimension size of 1. The dimensions are considered in reverse order, starting with the trailing
dimension; for example, looking at columns before rows in a two-dimensional case.

This make more sense when we consider that NumPy will in effect pad missing dimensions
with a size of 1 when comparing arrays. Therefore, the comparison between a two-dimensional
array A with 2 rows and 3 columns and a vector b with 3 elements:

6.5. Limitations of Broadcasting 40

A.shape = (2 x 3)

b.shape = (3)

In effect, this becomes a comparison between:

A.shape = (2 x 3)

b.shape = (1 x 3)

This same notion applies to the comparison between a scalar that is treated as an array with
the required number of dimensions:

A.shape = (2 x 3)

b.shape = (1)

This becomes a comparison between:

A.shape = (2 x 3)

b.shape = (1 x 1)

When the comparison fails, the broadcast cannot be performed, and an error is raised.
The example below attempts to broadcast a two-element array to a 2 × 3 array. This

comparison is in effect:

A.shape = (2 x 3)

b.shape = (1 x 2)

We can see that the last dimensions (columns) do not match and we would expect the
broadcast to fail. The example below demonstrates this in NumPy.

broadcasting error

from numpy import array

define two-dimensional array

A = array([

[1, 2, 3],

[1, 2, 3]])

print(A.shape)

define one-dimensional array

b = array([1, 2])

print(b.shape)

attempt broadcast

C = A + b

print(C)

Listing 6.7: Example of broadcasting error in NumPy.

Running the example first prints the shapes of the arrays then raises an error when attempting
to broadcast, as we expected.

(2, 3)

(2,)

ValueError: operands could not be broadcast together with shapes (2,3) (2,)

Listing 6.8: Example output of a broadcast error..

6.6. Extensions 41

6.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Create three new and different examples of broadcasting with NumPy arrays.

� Implement your own broadcasting function for manually broadcasting in one and two-
dimensional cases.

� Benchmark NumPy broadcasting and your own custom broadcasting functions with one
and two dimensional cases with very large arrays.

If you explore any of these extensions, I’d love to know.

6.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

6.7.1 Books

� Chapter 2, Deep Learning, 2016.
http://amzn.to/2EnS7x5

6.7.2 Articles

� Broadcasting, NumPy API, SciPy.org.
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html

� Broadcasting semantics in TensorFlow.
https://www.tensorflow.org/performance/xla/broadcasting

� Array Broadcasting in NumPy, EricsBroadcastingDoc.
http://scipy.github.io/old-wiki/pages/EricsBroadcastingDoc

� Broadcasting, Theano.
http://deeplearning.net/software/theano/tutorial/broadcasting.html

� Broadcasting arrays in NumPy, 2015.
https://eli.thegreenplace.net/2015/broadcasting-arrays-in-numpy/

� Broadcasting in Octave.
https://www.gnu.org/software/octave/doc/v4.2.1/Broadcasting.html

http://amzn.to/2EnS7x5
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html
https://www.tensorflow.org/performance/xla/broadcasting
http://scipy.github.io/old-wiki/pages/EricsBroadcastingDoc
http://deeplearning.net/software/theano/tutorial/broadcasting.html
https://eli.thegreenplace.net/2015/broadcasting-arrays-in-numpy/
https://www.gnu.org/software/octave/doc/v4.2.1/Broadcasting.html

6.8. Summary 42

6.8 Summary

In this tutorial, you discovered the concept of array broadcasting and how to implement in
NumPy. Specifically, you learned:

� The problem of arithmetic with arrays with different sizes.

� The solution of broadcasting and common examples in one and two dimensions.

� The rule of array broadcasting and when broadcasting fails.

6.8.1 Next

This is the end of this part, in the next part you will discover vectors and matrices, the main
data structures used in linear algebra.

Part IV

Matrices

43

Chapter 7

Vectors and Vector Arithmetic

Vectors are a foundational element of linear algebra. Vectors are used throughout the field of
machine learning in the description of algorithms and processes such as the target variable (y)
when training an algorithm. In this tutorial, you will discover linear algebra vectors for machine
learning. After completing this tutorial, you will know:

� What a vector is and how to define one in Python with NumPy.

� How to perform vector arithmetic such as addition, subtraction, multiplication and division.

� How to perform additional operations such as dot product and multiplication with a scalar.

Let’s get started.

7.1 Tutorial Overview

This tutorial is divided into 5 parts; they are:

1. What is a Vector

2. Defining a Vector

3. Vector Arithmetic

4. Vector Dot Product

5. Vector-Scalar Multiplication

7.2 What is a Vector

A vector is a tuple of one or more values called scalars.

Vectors are built from components, which are ordinary numbers. You can think of
a vector as a list of numbers, and vector algebra as operations performed on the
numbers in the list.

— Page 69, No Bullshit Guide To Linear Algebra, 2017.

44

7.3. Defining a Vector 45

Vectors are often represented using a lowercase character such as v; for example:

v = (v1, v2, v3) (7.1)

Where v1, v2, v3 are scalar values, often real values.
Vectors are also shown using a vertical representation or a column; for example:

v =

v1v2
v3

 (7.2)

It is common to represent the target variable as a vector with the lowercase y when describing
the training of a machine learning algorithm. It is common to introduce vectors using a geometric
analogy, where a vector represents a point or coordinate in an n-dimensional space, where n
is the number of dimensions, such as 2. The vector can also be thought of as a line from the
origin of the vector space with a direction and a magnitude.

These analogies are good as a starting point, but should not be held too tightly as we often
consider very high dimensional vectors in machine learning. I find the vector-as-coordinate the
most compelling analogy in machine learning. Now that we know what a vector is, let’s look at
how to define a vector in Python.

7.3 Defining a Vector

We can represent a vector in Python as a NumPy array. A NumPy array can be created from
a list of numbers. For example, below we define a vector with the length of 3 and the integer
values 1, 2 and 3.

create a vector

from numpy import array

define vector

v = array([1, 2, 3])

print(v)

Listing 7.1: Example of defining a vector.

The example defines a vector with 3 elements. Running the example prints the defined
vector.

[1 2 3]

Listing 7.2: Sample output from defining a vector.

7.4 Vector Arithmetic

In this section will demonstrate simple vector-vector arithmetic, where all operations are
performed element-wise between two vectors of equal length to result in a new vector with the
same length

7.4. Vector Arithmetic 46

7.4.1 Vector Addition

Two vectors of equal length can be added together to create a new third vector.

c = a+ b (7.3)

The new vector has the same length as the other two vectors. Each element of the new
vector is calculated as the addition of the elements of the other vectors at the same index; for
example:

c = (a1 + b1, a2 + b2, a3 + b3) (7.4)

Or, put another way:

c[0] = a[0] + b[0]

c[1] = a[1] + b[1]

c[2] = a[2] + b[2]

(7.5)

We can add vectors directly in Python by adding NumPy arrays.

vector addition

from numpy import array

define first vector

a = array([1, 2, 3])

print(a)

define second vector

b = array([1, 2, 3])

print(b)

add vectors

c = a + b

print(c)

Listing 7.3: Example of vector addition.

The example defines two vectors with three elements each, then adds them together. Running
the example first prints the two parent vectors then prints a new vector that is the addition of
the two vectors.

[1 2 3]

[1 2 3]

[2 4 6]

Listing 7.4: Sample output from vector addition.

7.4.2 Vector Subtraction

One vector can be subtracted from another vector of equal length to create a new third vector.

c = a− b (7.6)

7.4. Vector Arithmetic 47

As with addition, the new vector has the same length as the parent vectors and each element
of the new vector is calculated as the subtraction of the elements at the same indices.

c = (a1 − b1, a2 − b2, a3 − b3) (7.7)

Or, put another way:

c[0] = a[0]− b[0]

c[1] = a[1]− b[1]

c[2] = a[2]− b[2]

(7.8)

The NumPy arrays can be directly subtracted in Python.

vector subtraction

from numpy import array

define first vector

a = array([1, 2, 3])

print(a)

define second vector

b = array([0.5, 0.5, 0.5])

print(b)

subtract vectors

c = a - b

print(c)

Listing 7.5: Example of vector subtraction.

The example defines two vectors with three elements each, then subtracts the first from the
second. Running the example first prints the two parent vectors then prints the new vector that
is the first minus the second.

[1 2 3]

[0.5 0.5 0.5]

[0.5 1.5 2.5]

Listing 7.6: Sample output from vector subtraction.

7.4.3 Vector Multiplication

Two vectors of equal length can be multiplied together.

c = a× b (7.9)

As with addition and subtraction, this operation is performed element-wise to result in a
new vector of the same length.

c = (a1 × b1, a2 × b2, a3 × b3) (7.10)

or

c = (a1b1, a2b2, a3b3) (7.11)

7.4. Vector Arithmetic 48

Or, put another way:

c[0] = a[0]× b[0]

c[1] = a[1]× b[1]

c[2] = a[2]× b[2]

(7.12)

We can perform this operation directly in NumPy.

vector multiplication

from numpy import array

define first vector

a = array([1, 2, 3])

print(a)

define second vector

b = array([1, 2, 3])

print(b)

multiply vectors

c = a * b

print(c)

Listing 7.7: Example of vector multiplication.

The example defines two vectors with three elements each, then multiplies the vectors together.
Running the example first prints the two parent vectors, then the new vector is printed.

[1 2 3]

[1 2 3]

[1 4 9]

Listing 7.8: Sample output from vector multiplication.

7.4.4 Vector Division

Two vectors of equal length can be divided.

c =
a

b
(7.13)

As with other arithmetic operations, this operation is performed element-wise to result in a
new vector of the same length.

c = (
a1
b1
,
a2
b2
,
a3
b3

) (7.14)

Or, put another way:

c[0] = a[0]/b[0]

c[1] = a[1]/b[1]

c[2] = a[2]/b[2]

(7.15)

We can perform this operation directly in NumPy.

7.5. Vector Dot Product 49

vector division

from numpy import array

define first vector

a = array([1, 2, 3])

print(a)

define second vector

b = array([1, 2, 3])

print(b)

divide vectors

c = a / b

print(c)

Listing 7.9: Example of vector division.

The example defines two vectors with three elements each, then divides the first by the
second. Running the example first prints the two parent vectors, followed by the result of the
vector division.

[1 2 3]

[1 2 3]

[1. 1. 1.]

Listing 7.10: Sample output from vector division.

7.5 Vector Dot Product

We can calculate the sum of the multiplied elements of two vectors of the same length to give a
scalar. This is called the dot product, named because of the dot operator used when describing
the operation.

The dot product is the key tool for calculating vector projections, vector decomposi-
tions, and determining orthogonality. The name dot product comes from the symbol
used to denote it.

— Page 110, No Bullshit Guide To Linear Algebra, 2017.

c = a · b (7.16)

The operation can be used in machine learning to calculate the weighted sum of a vector.
The dot product is calculated as follows:

c = (a1 × b1 + a2 × b2 + a3 × b3) (7.17)

or

c = (a1b1 + a2b2 + a3b3) (7.18)

We can calculate the dot product between two vectors in Python using the dot() function
on a NumPy array.

7.6. Vector-Scalar Multiplication 50

vector dot product

from numpy import array

define first vector

a = array([1, 2, 3])

print(a)

define second vector

b = array([1, 2, 3])

print(b)

multiply vectors

c = a.dot(b)

print(c)

Listing 7.11: Example of vector dot product.

The example defines two vectors with three elements each, then calculates the dot product.
Running the example first prints the two parent vectors, then the scalar dot product.

[1 2 3]

[1 2 3]

14

Listing 7.12: Sample output from vector dot product.

7.6 Vector-Scalar Multiplication

A vector can be multiplied by a scalar, in effect scaling the magnitude of the vector. To keep
notation simple, we will use lowercase s to represent the scalar value.

c = s× v (7.19)

or

c = sv (7.20)

The multiplication is performed on each element of the vector to result in a new scaled
vector of the same length.

c = (s× v1, s× v2, s× v3) (7.21)

Or, put another way:

c[0] = v[0]× s
c[1] = v[1]× s
c[2] = v[2]× s

(7.22)

We can perform this operation directly with the NumPy array.

vector-scalar multiplication

from numpy import array

define vector

a = array([1, 2, 3])

7.7. Extensions 51

print(a)

define scalar

s = 0.5

print(s)

multiplication

c = s * a

print(c)

Listing 7.13: Example of vector-scalar multiplication.

The example first defines the vector and the scalar then multiplies the vector by the scalar.
Running the example first prints the parent vector, then scalar, and then the result of multiplying
the two together.

[1 2 3]

0.5

[0.5 1. 1.5]

Listing 7.14: Sample output from vector-scalar multiplication.

Similarly, vector-scalar addition, subtraction, and division can be performed in the same
way.

7.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Create one example using each operation using your own small array data.

� Implement each vector arithmetic operation manually for vectors defined as lists.

� Search machine learning papers and find 1 example of each operation being used.

If you explore any of these extensions, I’d love to know.

7.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

7.8.1 Books

� Section 1.15, Vectors. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Section 2.2, Vector operations. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Section 1.1 Vectors and Linear Combinations, Introduction to Linear Algebra, Fifth Edition,
2016.
http://amzn.to/2j2J0g4

http://amzn.to/2k76D4
http://amzn.to/2k76D4
http://amzn.to/2j2J0g4

7.9. Summary 52

� Section 2.1 Scalars, Vectors, Matrices and Tensors, Deep Learning, 2016.
http://amzn.to/2j4oKuP

� Section 1.B Definition of Vector Space, Linear Algebra Done Right, Third Edition, 2015.
http://amzn.to/2BGuEqI

7.8.2 API

� numpy.array() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html

� numpy.dot() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dot.html

7.8.3 Articles

� Vector space on Wikipedia.
https://en.wikipedia.org/wiki/Vector_space

� Dot product on Wikipedia.
https://en.wikipedia.org/wiki/Dot_product

7.9 Summary

In this tutorial, you discovered linear algebra vectors for machine learning. Specifically, you
learned:

� What a vector is and how to define one in Python with NumPy.

� How to perform vector arithmetic such as addition, subtraction, multiplication and division.

� How to perform additional operations such as dot product and multiplication with a scalar.

7.9.1 Next

In the next chapter you will discover vector norms for calculating the magnitude of vectors.

http://amzn.to/2j4oKuP
http://amzn.to/2BGuEqI
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dot.html
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Dot_product

Chapter 8

Vector Norms

Calculating the length or magnitude of vectors is often required either directly as a regularization
method in machine learning, or as part of broader vector or matrix operations. In this tutorial,
you will discover the different ways to calculate vector lengths or magnitudes, called the vector
norm. After completing this tutorial, you will know:

� The L1 norm that is calculated as the sum of the absolute values of the vector.

� The L2 norm that is calculated as the square root of the sum of the squared vector values.

� The max norm that is calculated as the maximum vector values.

Let’s get started.

8.1 Tutorial Overview

This tutorial is divided into 4 parts; they are:

1. Vector Norm

2. Vector L1 Norm

3. Vector L2 Norm

4. Vector Max Norm

8.2 Vector Norm

Calculating the size or length of a vector is often required either directly or as part of a broader
vector or vector-matrix operation. The length of the vector is referred to as the vector norm or
the vector’s magnitude.

The length of a vector is a nonnegative number that describes the extent of the
vector in space, and is sometimes referred to as the vector’s magnitude or the norm.

— Page 112, No Bullshit Guide To Linear Algebra, 2017.

53

8.3. Vector L1 Norm 54

The length of the vector is always a positive number, except for a vector of all zero values.
It is calculated using some measure that summarizes the distance of the vector from the origin
of the vector space. For example, the origin of a vector space for a vector with 3 elements is
(0, 0, 0). Notations are used to represent the vector norm in broader calculations and the type
of vector norm calculation almost always has its own unique notation. We will take a look at a
few common vector norm calculations used in machine learning.

8.3 Vector L1 Norm

The length of a vector can be calculated using the L1 norm, where the 1 is a superscript of
the L. The notation for the L1 norm of a vector is ||v||1, where 1 is a subscript. As such, this
length is sometimes called the taxicab norm or the Manhattan norm.

L1(v) = ||v||1 (8.1)

The L1 norm is calculated as the sum of the absolute vector values, where the absolute value
of a scalar uses the notation |a1|. In effect, the norm is a calculation of the Manhattan distance
from the origin of the vector space.

||v||1 = |a1|+ |a2|+ |a3| (8.2)

In several machine learning applications, it is important to discriminate between
elements that are exactly zero and elements that are small but nonzero. In these
cases, we turn to a function that grows at the same rate in all locations, but retains
mathematical simplicity: the L1 norm.

— Pages 39-40, Deep Learning, 2016.

The L1 norm of a vector can be calculated in NumPy using the norm() function with a
parameter to specify the norm order, in this case 1.

vector L1 norm

from numpy import array

from numpy.linalg import norm

define vector

a = array([1, 2, 3])

print(a)

calculate norm

l1 = norm(a, 1)

print(l1)

Listing 8.1: Example of calculating the L1 vector norm.

First, a 3-element vector is defined, then the L1 norm of the vector is calculated. Running
the example first prints the defined vector and then the vector’s L1 norm.

[1 2 3]

6.0

Listing 8.2: Sample output from calculating the L1 vector norm.

8.4. Vector L2 Norm 55

The L1 norm is often used when fitting machine learning algorithms as a regularization
method, e.g. a method to keep the coefficients of the model small, and in turn, the model less
complex.

8.4 Vector L2 Norm

The length of a vector can be calculated using the L2 norm, where the 2 is a superscript of the
L. The notation for the L2 norm of a vector is ||v||2 where 2 is a subscript.

L2(v) = ||v||2 (8.3)

The L2 norm calculates the distance of the vector coordinate from the origin of the vector
space. As such, it is also known as the Euclidean norm as it is calculated as the Euclidean
distance from the origin. The result is a positive distance value. The L2 norm is calculated as
the square root of the sum of the squared vector values.

||v||2 =
√
a21 + a22 + a23 (8.4)

The L2 norm of a vector can be calculated in NumPy using the norm() function with default
parameters.

vector L2 norm

from numpy import array

from numpy.linalg import norm

define vector

a = array([1, 2, 3])

print(a)

calculate norm

l2 = norm(a)

print(l2)

Listing 8.3: Example of calculating the L2 vector norm.

First, a 3-element vector is defined, then the L2 norm of the vector is calculated. Running
the example first prints the defined vector and then the vector’s L2 norm.

[1 2 3]

3.74165738677

Listing 8.4: Sample output from calculating the L2 vector norm.

Like the L1 norm, the L2 norm is often used when fitting machine learning algorithms as a
regularization method, e.g. a method to keep the coefficients of the model small and, in turn,
the model less complex. By far, the L2 norm is more commonly used than other vector norms
in machine learning.

8.5 Vector Max Norm

The length of a vector can be calculated using the maximum norm, also called max norm. Max
norm of a vector is referred to as Linf where inf is a superscript and can be represented with

8.6. Extensions 56

the infinity symbol. The notation for max norm is ||v||inf , where inf is a subscript.

Linf (v) = ||v||inf (8.5)

The max norm is calculated as returning the maximum value of the vector, hence the name.

||v||inf = max a1, a2, a3 (8.6)

The max norm of a vector can be calculated in NumPy using the norm() function with the
order parameter set to inf.

vector max norm

from math import inf

from numpy import array

from numpy.linalg import norm

define vector

a = array([1, 2, 3])

print(a)

calculate norm

maxnorm = norm(a, inf)

print(maxnorm)

Listing 8.5: Example of calculating the max vector norm.

First, a 3× 3 vector is defined, then the max norm of the vector is calculated. Running the
example first prints the defined vector and then the vector’s max norm.

[1 2 3]

3.0

Listing 8.6: Sample output from calculating the max vector norm.

Max norm is also used as a regularization in machine learning, such as on neural network
weights, called max norm regularization.

8.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Create one example using each operation using your own small array data.

� Implement each operation manually for vectors defined as lists of lists.

� Search machine learning papers and find 1 example of each operation being used.

If you explore any of these extensions, I’d love to know.

8.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

8.8. Summary 57

8.7.1 Books

� Section 1.2 Lengths and Dot Products, Introduction to Linear Algebra, Fifth Edition, 2016.
http://amzn.to/2j2J0g4

� Section 2.5 Norms, Deep Learning, 2016.
http://amzn.to/2j4oKuP

� Section 6.A Inner Products and Norms, Linear Algebra Done Right, Third Edition, 2015.
http://amzn.to/2BGuEqI

� Lecture 3 Norms, Numerical Linear Algebra, 1997.
http://amzn.to/2BI9kRH

8.7.2 API

� numpy.linalg.norm() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.norm.

html

8.7.3 Articles

� Norm (mathematics) on Wikipedia.
https://en.wikipedia.org/wiki/Norm_(mathematics)

8.8 Summary

In this tutorial, you discovered the different ways to calculate vector lengths or magnitudes,
called the vector norm. Specifically, you learned:

� The L1 norm that is calculated as the sum of the absolute values of the vector.

� The L2 norm that is calculated as the square root of the sum of the squared vector values.

� The max norm that is calculated as the maximum vector values.

8.8.1 Next

In the next chapter you will discover matrices and basic matrix arithmetic.

http://amzn.to/2j2J0g4
http://amzn.to/2j4oKuP
http://amzn.to/2BGuEqI
http://amzn.to/2BI9kRH
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.norm.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.norm.html
https://en.wikipedia.org/wiki/Norm_(mathematics)

Chapter 9

Matrices and Matrix Arithmetic

Matrices are a foundational element of linear algebra. Matrices are used throughout the field of
machine learning in the description of algorithms and processes such as the input data variable
(X) when training an algorithm. In this tutorial, you will discover matrices in linear algebra
and how to manipulate them in Python. After completing this tutorial, you will know:

� What a matrix is and how to define one in Python with NumPy.

� How to perform element-wise operations such as addition, subtraction, and the Hadamard
product.

� How to multiply matrices together and the intuition behind the operation.

Let’s get started.

9.1 Tutorial Overview

This tutorial is divided into 6 parts; they are:

1. What is a Matrix

2. Defining a Matrix

3. Matrix Arithmetic

4. Matrix-Matrix Multiplication

5. Matrix-Vector Multiplication

6. Matrix-Scalar Multiplication

9.2 What is a Matrix

A matrix is a two-dimensional array of scalars with one or more columns and one or more rows.

A matrix is a two-dimensional array (a table) of numbers.

58

9.3. Defining a Matrix 59

— Page 115, No Bullshit Guide To Linear Algebra, 2017.

The notation for a matrix is often an uppercase letter, such as A, and entries are referred to
by their two-dimensional subscript of row (i) and column (j), such as ai,j . For example, we can
define a 3-row, 2-column matrix:

A = ((a1,1, a1,2), (a2,1, a2,2), (a3,1, a3,2)) (9.1)

It is more common to see matrices defined using a horizontal notation.

A =

a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

 (9.2)

A likely first place you may encounter a matrix in machine learning is in model training
data comprised of many rows and columns and often represented using the capital letter X.
The geometric analogy used to help understand vectors and some of their operations does not
hold with matrices. Further, a vector itself may be considered a matrix with one column and
multiple rows. Often the dimensions of the matrix are denoted as m and n or m× n for the
number of rows and the number of columns respectively. Now that we know what a matrix is,
let’s look at defining one in Python.

9.3 Defining a Matrix

We can represent a matrix in Python using a two-dimensional NumPy array. A NumPy array
can be constructed given a list of lists. For example, below is a 2 row, 3 column matrix.

create matrix

from numpy import array

A = array([[1, 2, 3], [4, 5, 6]])

print(A)

Listing 9.1: Example of creating a matrix.

Running the example prints the created matrix showing the expected structure.

[[1 2 3]

[4 5 6]]

Listing 9.2: Sample output from creating a matrix.

9.4 Matrix Arithmetic

In this section will demonstrate simple matrix-matrix arithmetic, where all operations are
performed element-wise between two matrices of equal size to result in a new matrix with the
same size.

9.4. Matrix Arithmetic 60

9.4.1 Matrix Addition

Two matrices with the same dimensions can be added together to create a new third matrix.

C = A+B (9.3)

The scalar elements in the resulting matrix are calculated as the addition of the elements in
each of the matrices being added.

C =

a1,1 + b1,1 a1,2 + b1,2
a2,1 + b2,1 a2,2 + b2,2
a3,1 + b3,1 a3,2 + b3,2

 (9.4)

Or, put another way:

C[0, 0] = A[0, 0] +B[0, 0]

C[1, 0] = A[1, 0] +B[1, 0]

C[2, 0] = A[2, 0] +B[2, 0]

C[0, 1] = A[0, 1] +B[0, 1]

C[1, 1] = A[1, 1] +B[1, 1]

C[2, 1] = A[2, 1] +B[2, 1]

(9.5)

We can implement this in Python using the plus operator directly on the two NumPy arrays.

matrix addition

from numpy import array

define first matrix

A = array([

[1, 2, 3],

[4, 5, 6]])

print(A)

define second matrix

B = array([

[1, 2, 3],

[4, 5, 6]])

print(B)

add matrices

C = A + B

print(C)

Listing 9.3: Example of matrix addition.

The example first defines two 2 × 3 matrices and then adds them together. Running the
example first prints the two parent matrices and then the result of adding them together.

[[1 2 3]

[4 5 6]]

[[1 2 3]

[4 5 6]]

[[2 4 6]

[8 10 12]]

Listing 9.4: Sample output from matrix addition.

9.4. Matrix Arithmetic 61

9.4.2 Matrix Subtraction

Similarly, one matrix can be subtracted from another matrix with the same dimensions.

C = A−B (9.6)

The scalar elements in the resulting matrix are calculated as the subtraction of the elements
in each of the matrices.

C =

a1,1 − b1,1 a1,2 − b1,2
a2,1 − b2,1 a2,2 − b2,2
a3,1 − b3,1 a3,2 − b3,2

 (9.7)

Or, put another way:

C[0, 0] = A[0, 0]−B[0, 0]

C[1, 0] = A[1, 0]−B[1, 0]

C[2, 0] = A[2, 0]−B[2, 0]

C[0, 1] = A[0, 1]−B[0, 1]

C[1, 1] = A[1, 1]−B[1, 1]

C[2, 1] = A[2, 1]−B[2, 1]

(9.8)

We can implement this in Python using the minus operator directly on the two NumPy
arrays.

matrix subtraction

from numpy import array

define first matrix

A = array([

[1, 2, 3],

[4, 5, 6]])

print(A)

define second matrix

B = array([

[0.5, 0.5, 0.5],

[0.5, 0.5, 0.5]])

print(B)

subtract matrices

C = A - B

print(C)

Listing 9.5: Example of matrix subtraction.

The example first defines two 2× 3 matrices and then subtracts one from the other. Running
the example first prints the two parent matrices and then subtracts the first matrix from the
second.

[[1 2 3]

[4 5 6]]

[[0.5 0.5 0.5]

[0.5 0.5 0.5]]

[[0.5 1.5 2.5]

9.4. Matrix Arithmetic 62

[3.5 4.5 5.5]]

Listing 9.6: Sample output from matrix subtraction.

9.4.3 Matrix Multiplication (Hadamard Product)

Two matrices with the same size can be multiplied together, and this is often called element-wise
matrix multiplication or the Hadamard product. It is not the typical operation meant when
referring to matrix multiplication, therefore a different operator is often used, such as a circle ◦.

C = A ◦B (9.9)

As with element-wise subtraction and addition, element-wise multiplication involves the
multiplication of elements from each parent matrix to calculate the values in the new matrix.

C =

a1,1 × b1,1 a1,2 × b1,2
a2,1 × b2,1 a2,2 × b2,2
a3,1 × b3,1 a3,2 × b3,2

 (9.10)

Or, put another way:

C[0, 0] = A[0, 0]×B[0, 0]

C[1, 0] = A[1, 0]×B[1, 0]

C[2, 0] = A[2, 0]×B[2, 0]

C[0, 1] = A[0, 1]×B[0, 1]

C[1, 1] = A[1, 1]×B[1, 1]

C[2, 1] = A[2, 1]×B[2, 1]

(9.11)

We can implement this in Python using the star operator directly on the two NumPy arrays.

matrix Hadamard product

from numpy import array

define first matrix

A = array([

[1, 2, 3],

[4, 5, 6]])

print(A)

define second matrix

B = array([

[1, 2, 3],

[4, 5, 6]])

print(B)

multiply matrices

C = A * B

print(C)

Listing 9.7: Example of matrix Hadamard product.

The example first defines two 2× 3 matrices and then multiplies them together. Running the
example first prints the two parent matrices and then the result of multiplying them together
with a Hadamard Product.

9.4. Matrix Arithmetic 63

[[1 2 3]

[4 5 6]]

[[1 2 3]

[4 5 6]]

[[1 4 9]

[16 25 36]]

Listing 9.8: Sample output from matrix Hadamard product.

9.4.4 Matrix Division

One matrix can be divided by another matrix with the same dimensions.

C =
A

B
(9.12)

The scalar elements in the resulting matrix are calculated as the division of the elements in
each of the matrices.

C =

a1,1
b1,1

a1,2
b1,2

a2,1
b2,1

a2,2
b2,2

a3,1
b3,1

a3,2
b3,2

 (9.13)

Or, put another way:

C[0, 0] = A[0, 0]/B[0, 0]

C[1, 0] = A[1, 0]/B[1, 0]

C[2, 0] = A[2, 0]/B[2, 0]

C[0, 1] = A[0, 1]/B[0, 1]

C[1, 1] = A[1, 1]/B[1, 1]

C[2, 1] = A[2, 1]/B[2, 1]

(9.14)

We can implement this in Python using the division operator directly on the two NumPy
arrays.

matrix division

from numpy import array

define first matrix

A = array([

[1, 2, 3],

[4, 5, 6]])

print(A)

define second matrix

B = array([

[1, 2, 3],

[4, 5, 6]])

print(B)

divide matrices

C = A / B

print(C)

9.5. Matrix-Matrix Multiplication 64

Listing 9.9: Example of matrix division.

The example first defines two 2 × 3 matrices and then divides the first from the second
matrix. Running the example first prints the two parent matrices and then divides the first
matrix by the second.

[[1 2 3]

[4 5 6]]

[[1 2 3]

[4 5 6]]

[[1. 1. 1.]

[1. 1. 1.]]

Listing 9.10: Sample output from matrix division.

9.5 Matrix-Matrix Multiplication

Matrix multiplication, also called the matrix dot product is more complicated than the previous
operations and involves a rule as not all matrices can be multiplied together.

C = A ·B (9.15)

or

C = AB (9.16)

The rule for matrix multiplication is as follows:

� The number of columns (n) in the first matrix (A) must equal the number of rows (m) in
the second matrix (B).

For example, matrix A has the dimensions m rows and n columns and matrix B has the
dimensions n and k. The n columns in A and n rows in B are equal. The result is a new matrix
with m rows and k columns.

C(m, k) = A(m,n) ·B(n, k) (9.17)

This rule applies for a chain of matrix multiplications where the number of columns in one
matrix in the chain must match the number of rows in the following matrix in the chain.

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order for
this product to be defined, A must have the same number of columns as B has rows.
If A is of shape m× n and B is of shape n× p, then C is of shape m× p.

— Page 34, Deep Learning, 2016.

9.5. Matrix-Matrix Multiplication 65

The intuition for the matrix multiplication is that we are calculating the dot product between
each row in matrix A with each column in matrix B. For example, we can step down rows of
column A and multiply each with column 1 in B to give the scalar values in column 1 of C.
Below describes the matrix multiplication using matrix notation.

A =

a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

 (9.18)

B =

(
b1,1 b1,2
b2,1 b2,2

)
(9.19)

C =

a1,1 × b1,1 + a1,2 × b2,1, a1,1 × b1,2 + a1,2 × b2,2
a2,1 × b1,1 + a2,2 × b2,1, a2,1 × b1,2 + a2,2 × b2,2
a3,1 × b1,1 + a3,2 × b2,1, a3,1 × b1,2 + a3,2 × b2,2

 (9.20)

We can describe the matrix multiplication operation using array notation.

C[0, 0] = A[0, 0]×B[0, 0] + A[0, 1]×B[1, 0]

C[1, 0] = A[1, 0]×B[0, 0] + A[1, 1]×B[1, 0]

C[2, 0] = A[2, 0]×B[0, 0] + A[2, 1]×B[1, 0]

C[0, 1] = A[0, 0]×B[0, 1] + A[0, 1]×B[1, 1]

C[1, 1] = A[1, 0]×B[0, 1] + A[1, 1]×B[1, 1]

C[2, 1] = A[2, 0]×B[0, 1] + A[2, 1]×B[1, 1]

(9.21)

The matrix multiplication operation can be implemented in NumPy using the dot() function.
It can also be calculated using the newer @ operator, since Python version 3.5. The example
below demonstrates both methods.

matrix dot product

from numpy import array

define first matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

define second matrix

B = array([

[1, 2],

[3, 4]])

print(B)

multiply matrices

C = A.dot(B)

print(C)

multiply matrices with @ operator

D = A @ B

print(D)

Listing 9.11: Example of matrix-matrix dot product.

9.6. Matrix-Vector Multiplication 66

The example first defines two 3× 2 matrices and then calculates their dot product using the
dot() function and the @ operator. Running the example first prints the two parent matrices
and then the results of the two dot product operations.

[[1 2]

[3 4]

[5 6]]

[[1 2]

[3 4]]

[[7 10]

[15 22]

[23 34]]

[[7 10]

[15 22]

[23 34]]

Listing 9.12: Sample output matrix-matrix dot product.

I recommend using the dot() function for matrix multiplication for now given the newness
of the @ operator.

9.6 Matrix-Vector Multiplication

A matrix and a vector can be multiplied together as long as the rule of matrix multiplication
is observed. Specifically, that the number of columns in the matrix must equal the number of
items in the vector. As with matrix multiplication, the operation can be written using the dot
notation. Because the vector only has one column, the result is always a vector.

c = A · v (9.22)

Or without the dot in a compact form.

c = Av (9.23)

The result is a vector with the same number of rows as the parent matrix.

A =

a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

 (9.24)

v =

(
v1
v2

)
(9.25)

c =

a1,1 × v1 + a1,2 × v2
a2,1 × v1 + a2,2 × v2
a3,1 × v1 + a3,2 × v2

 (9.26)

9.7. Matrix-Scalar Multiplication 67

Or, more compactly.

c =

a1,1v1 + a1,2v2
a2,1v1 + a2,2v2
a3,1v1 + a3,2v2

 (9.27)

We can also represent this with array notation.

c[0] = A[0, 0]× v[0] + A[0, 1]× v[1]

c[1] = A[1, 0]× v[0] + A[1, 1]× v[1]

c[2] = A[2, 0]× v[0] + A[2, 1]× v[1]

(9.28)

The matrix-vector multiplication can be implemented in NumPy using the dot() function.

matrix-vector multiplication

from numpy import array

define matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

define vector

B = array([0.5, 0.5])

print(B)

multiply

C = A.dot(B)

print(C)

Listing 9.13: Example of matrix-vector dot product.

The example first defines a 3× 2 matrix and a 2 element vector and then multiplies them
together. Running the example first prints the parent matrix and vector and then the result of
multiplying them together.

[[1 2]

[3 4]

[5 6]]

[0.5 0.5]

[1.5 3.5 5.5]

Listing 9.14: Sample output matrix-vector dot product.

9.7 Matrix-Scalar Multiplication

A matrix can be multiplied by a scalar. This can be represented using the dot notation between
the matrix and the scalar.

C = A · b (9.29)

9.7. Matrix-Scalar Multiplication 68

Or without the dot notation.

C = Ab (9.30)

The result is a matrix with the same size as the parent matrix where each element of the
matrix is multiplied by the scalar value.

A =

a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

 (9.31)

C =

a1,1 × b+ a1,2 × b
a2,1 × b+ a2,2 × b
a3,1 × b+ a3,2 × b

 (9.32)

or

C =

a1,1b+ a1,2b
a2,1b+ a2,2b
a3,1b+ a3,2b

 (9.33)

We can also represent this with array notation.

C[0, 0] = A[0, 0]× b
C[1, 0] = A[1, 0]× b
C[2, 0] = A[2, 0]× b
C[0, 1] = A[0, 1]× b
C[1, 1] = A[1, 1]× b
C[2, 1] = A[2, 1]× b

(9.34)

This can be implemented directly in NumPy with the multiplication operator.

matrix-scalar multiplication

from numpy import array

define matrix

A = array([[1, 2], [3, 4], [5, 6]])

print(A)

define scalar

b = 0.5

print(b)

multiply

C = A * b

print(C)

Listing 9.15: Example of matrix-scalar dot product.

The example first defines a 3 × 2 matrix and a scalar and then multiplies them together.
Running the example first prints the parent matrix and scalar and then the result of multiplying
them together.

[[1 2]

[3 4]

[5 6]]

9.8. Extensions 69

0.5

[[0.5 1.]

[1.5 2.]

[2.5 3.]]

Listing 9.16: Sample output matrix-scalar dot product.

9.8 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Create one example using each operation using your own small array data.

� Implement each matrix arithmetic operation manually for matrices defined as lists of lists.

� Search machine learning papers and find 1 example of each operation being used.

If you explore any of these extensions, I’d love to know.

9.9 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

9.9.1 Books

� Section 2.3, Matrix operations. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Section 3.3, Matrix multiplication. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Section 1.3 Matrices, Introduction to Linear Algebra, Fifth Edition, 2016.
http://amzn.to/2AZ7R8j

� Section 2.4 Rules for Matrix Operations, Introduction to Linear Algebra, Fifth Edition,
2016.
http://amzn.to/2AZ7R8j

� Section 2.1 Scalars, Vectors, Matrices and Tensors, Deep Learning, 2016.
http://amzn.to/2j4oKuP

� Section 2.2 Multiplying Matrices and Vectors, Deep Learning, 2016.
http://amzn.to/2B3MsuU

� Section 3.C Matrices, Linear Algebra Done Right, Third Edition, 2015.
http://amzn.to/2BGuEqI

� Lecture 1 Matrix-Vector Multiplication, Numerical Linear Algebra, 1997.
http://amzn.to/2BI9kRH

http://amzn.to/2k76D4
http://amzn.to/2k76D4
http://amzn.to/2AZ7R8j
http://amzn.to/2AZ7R8j
http://amzn.to/2j4oKuP
http://amzn.to/2B3MsuU
http://amzn.to/2BGuEqI
http://amzn.to/2BI9kRH

9.10. Summary 70

9.9.2 API

� numpy.array() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html

� numpy.dot() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dot.html

9.9.3 Articles

� Matrix (mathematics).
https://en.wikipedia.org/wiki/Matrix_(mathematics)

� Matrix multiplication on Wikipedia.
https://en.wikipedia.org/wiki/Matrix_multiplication

� Hadamard product (matrices) on Wikipedia.
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

� Dot product on Wikipedia.
https://en.wikipedia.org/wiki/Dot_product

9.10 Summary

In this tutorial, you discovered matrices in linear algebra and how to manipulate them in Python.
Specifically, you learned:

� What a matrix is and how to define one in Python with NumPy.

� How to perform element-wise operations such as addition, subtraction, and the Hadamard
product.

� How to multiply matrices together and the intuition behind the operation.

9.10.1 Next

In the next chapter you will discover a suite of different types of matrices.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dot.html
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Dot_product

Chapter 10

Types of Matrices

A lot of linear algebra is concerned with operations on vectors and matrices, and there are many
different types of matrices. There are a few types of matrices that you may encounter again and
again when getting started in linear algebra, particularity the parts of linear algebra relevant to
machine learning. In this tutorial, you will discover a suite of different types of matrices from
the field of linear algebra that you may encounter in machine learning. After completing this
tutorial, you will know:

� Square, symmetric, triangular, and diagonal matrices that are much as their names suggest.

� Identity matrices that are all zero values except along the main diagonal where the values
are 1.

� Orthogonal matrices that generalize the idea of perpendicular vectors and have useful
computational properties.

Let’s get started.

10.1 Tutorial Overview

This tutorial is divided into 6 parts to cover the main types of matrices; they are:

1. Square Matrix

2. Symmetric Matrix

3. Triangular Matrix

4. Diagonal Matrix

5. Identity Matrix

6. Orthogonal Matrix

71

10.2. Square Matrix 72

10.2 Square Matrix

A square matrix is a matrix where the number of rows (n) is equivalent to the number of
columns (m).

n ≡ m (10.1)

The square matrix is contrasted with the rectangular matrix where the number of rows and
columns are not equal. Given that the number of rows and columns match, the dimensions are
usually denoted as n, e.g. n× n. The size of the matrix is called the order, so an order 4 square
matrix is 4× 4. The vector of values along the diagonal of the matrix from the top left to the
bottom right is called the main diagonal. Below is an example of an order 3 square matrix.

M =

1 2 3
1 2 3
1 2 3

 (10.2)

Square matrices are readily added and multiplied together and are the basis of many simple
linear transformations, such as rotations (as in the rotations of images).

10.3 Symmetric Matrix

A symmetric matrix is a type of square matrix where the top-right triangle is the same as the
bottom-left triangle.

It is no exaggeration to say that symmetric matrices S are the most important
matrices the world will ever see — in the theory of linear algebra and also in the
applications.

— Page 338, Introduction to Linear Algebra, Fifth Edition, 2016.

To be symmetric, the axis of symmetry is always the main diagonal of the matrix, from the
top left to the bottom right. Below is an example of a 5× 5 symmetric matrix.

M =

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

 (10.3)

A symmetric matrix is always square and equal to its own transpose. The transpose is an
operation that flips the number of rows and columns. It is explained in more detail in the next
lesson.

M = MT (10.4)

10.4. Triangular Matrix 73

10.4 Triangular Matrix

A triangular matrix is a type of square matrix that has all values in the upper-right or lower-left
of the matrix with the remaining elements filled with zero values. A triangular matrix with
values only above the main diagonal is called an upper triangular matrix. Whereas, a triangular
matrix with values only below the main diagonal is called a lower triangular matrix. Below is
an example of a 3× 3 upper triangular matrix.

M =

1 2 3
0 2 3
0 0 3

 (10.5)

Below is an example of a 3× 3 lower triangular matrix.

M =

1 0 0
1 2 0
1 2 3

 (10.6)

NumPy provides functions to calculate a triangular matrix from an existing square matrix.
The tril() function to calculate the lower triangular matrix from a given matrix and the
triu() to calculate the upper triangular matrix from a given matrix The example below defines
a 3× 3 square matrix and calculates the lower and upper triangular matrix from it.

triangular matrices

from numpy import array

from numpy import tril

from numpy import triu

define square matrix

M = array([

[1, 2, 3],

[1, 2, 3],

[1, 2, 3]])

print(M)

lower triangular matrix

lower = tril(M)

print(lower)

upper triangular matrix

upper = triu(M)

print(upper)

Listing 10.1: Example of creating a triangular matrices.

Running the example prints the defined matrix followed by the lower and upper triangular
matrices.

[[1 2 3]

[1 2 3]

[1 2 3]]

[[1 0 0]

[1 2 0]

[1 2 3]]

[[1 2 3]

[0 2 3]

10.5. Diagonal Matrix 74

[0 0 3]]

Listing 10.2: Sample output from creating triangular matrices.

10.5 Diagonal Matrix

A diagonal matrix is one where values outside of the main diagonal have a zero value, where the
main diagonal is taken from the top left of the matrix to the bottom right. A diagonal matrix
is often denoted with the variable D and may be represented as a full matrix or as a vector of
values on the main diagonal.

Diagonal matrices consist mostly of zeros and have non-zero entries only along the
main diagonal.

— Page 40, Deep Learning, 2016.

Below is an example of a 3× 3 square diagonal matrix.

D =

1 0 0
0 2 0
0 0 3

 (10.7)

As a vector, it would be represented as:

d =

d1,1d2,2
d3,3

 (10.8)

Or, with the specified scalar values:

d =

1
2
3

 (10.9)

A diagonal matrix does not have to be square. In the case of a rectangular matrix, the
diagonal would cover the dimension with the smallest length; for example:

D =

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4
0 0 0 0

 (10.10)

NumPy provides the function diag() that can create a diagonal matrix from an existing
matrix, or transform a vector into a diagonal matrix. The example below defines a 3× 3 square
matrix, extracts the main diagonal as a vector, and then creates a diagonal matrix from the
extracted vector.

10.6. Identity Matrix 75

diagonal matrix

from numpy import array

from numpy import diag

define square matrix

M = array([

[1, 2, 3],

[1, 2, 3],

[1, 2, 3]])

print(M)

extract diagonal vector

d = diag(M)

print(d)

create diagonal matrix from vector

D = diag(d)

print(D)

Listing 10.3: Example of creating a diagonal matrix.

Running the example first prints the defined matrix, followed by the vector of the main
diagonal and the diagonal matrix constructed from the vector.

[[1 2 3]

[1 2 3]

[1 2 3]]

[1 2 3]

[[1 0 0]

[0 2 0]

[0 0 3]]

Listing 10.4: Sample output from creating a diagonal matrix.

10.6 Identity Matrix

An identity matrix is a square matrix that does not change a vector when multiplied. The
values of an identity matrix are known. All of the scalar values along the main diagonal (top-left
to bottom-right) have the value one, while all other values are zero.

An identity matrix is a matrix that does not change any vector when we multiply
that vector by that matrix.

— Page 36, Deep Learning, 2016.

An identity matrix is often represented using the notation I or with the dimensionality In,
where n is a subscript that indicates the dimensionality of the square identity matrix. In some
notations, the identity may be referred to as the unit matrix, or U , to honor the one value it
contains (this is different from a Unitary matrix). For example, an identity matrix with the size
3 or I3 would be as follows:

I =

1 0 0
0 1 0
0 0 1

 (10.11)

10.7. Orthogonal Matrix 76

In NumPy, an identity matrix can be created with a specific size using the identity()

function. The example below creates an I3 identity matrix.

identity matrix

from numpy import identity

I = identity(3)

print(I)

Listing 10.5: Example of creating an identity matrix.

Running the example prints the created identity matrix.

[[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]]

Listing 10.6: Sample output from creating an identity matrix.

Alone, the identity matrix is not that interesting, although it is a component in other import
matrix operations, such as matrix inversion.

10.7 Orthogonal Matrix

Two vectors are orthogonal when their dot product equals zero. The length of each vector is 1
then the vectors are called orthonormal because they are both orthogonal and normalized.

v · w = 0 (10.12)

or

v · wT = 0 (10.13)

This is intuitive when we consider that one line is orthogonal with another if it is perpendicular
to it. An orthogonal matrix is a type of square matrix whose columns and rows are orthonormal
unit vectors, e.g. perpendicular and have a length or magnitude of 1.

An orthogonal matrix is a square matrix whose rows are mutually orthonormal and
whose columns are mutually orthonormal

— Page 41, Deep Learning, 2016.

An Orthogonal matrix is often denoted as uppercase Q.

Multiplication by an orthogonal matrix preserves lengths.

— Page 277, No Bullshit Guide To Linear Algebra, 2017.

The Orthogonal matrix is defined formally as follows:

QT ·Q = Q ·QT = I (10.14)

10.7. Orthogonal Matrix 77

Where Q is the orthogonal matrix, QT indicates the transpose of Q, and I is the identity
matrix. A matrix is orthogonal if its transpose is equal to its inverse.

QT = Q−1 (10.15)

Another equivalence for an orthogonal matrix is if the dot product of the matrix and itself
equals the identity matrix.

Q ·QT = I (10.16)

Orthogonal matrices are used a lot for linear transformations, such as reflections and
permutations. A simple 2 × 2 orthogonal matrix is listed below, which is an example of a
reflection matrix or coordinate reflection.

Q =

(
1 0
0 −1

)
(10.17)

The example below creates this orthogonal matrix and checks the above equivalences.

orthogonal matrix

from numpy import array

from numpy.linalg import inv

define orthogonal matrix

Q = array([

[1, 0],

[0, -1]])

print(Q)

inverse equivalence

V = inv(Q)

print(Q.T)

print(V)

identity equivalence

I = Q.dot(Q.T)

print(I)

Listing 10.7: Example of creating an orthogonal matrix.

Running the example first prints the orthogonal matrix, the inverse of the orthogonal matrix,
and the transpose of the orthogonal matrix are then printed and are shown to be equivalent.
Finally, the identity matrix is printed which is calculated from the dot product of the orthogonal
matrix with its transpose.

[[1 0]

[0 -1]]

[[1 0]

[0 -1]]

[[1. 0.]

[-0. -1.]]

[[1 0]

[0 1]]

Listing 10.8: Sample output from creating an orthogonal matrix.

10.8. Extensions 78

Note, sometimes a number close to zero can be represented as -0 due to the rounding of
floating point precision. Just take it as 0.0. Orthogonal matrices are useful tools as they are
computationally cheap and stable to calculate their inverse as simply their transpose.

10.8 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Modify each example using your own small contrived array data.

� Write your own functions for creating each matrix type.

� Research one example where each type of array was used in machine learning.

If you explore any of these extensions, I’d love to know.

10.9 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

10.9.1 Books

� Section 6.2 Special types of matrices. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Introduction to Linear Algebra, 2016.
http://amzn.to/2j2J0g4

� Section 2.3 Identity and Inverse Matrices, Deep Learning, 2016.
http://amzn.to/2B3MsuU

� Section 2.6 Special Kinds of Matrices and Vectors, Deep Learning, 2016.
http://amzn.to/2B3MsuU

10.9.2 API

� numpy.tril() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.tril.html

� numpy.triu() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.triu.html

� numpy.diag() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html

� numpy.identity() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.identity.

html

http://amzn.to/2k76D4
http://amzn.to/2j2J0g4
http://amzn.to/2B3MsuU
http://amzn.to/2B3MsuU
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.tril.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.triu.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.identity.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.identity.html

10.10. Summary 79

10.9.3 Articles

� Square matrix on Wikipedia.
https://en.wikipedia.org/wiki/Square_matrix

� Main diagonal on Wikipedia.
https://en.wikipedia.org/wiki/Main_diagonal

� Symmetric matrix on Wikipedia.
https://en.wikipedia.org/wiki/Symmetric_matrix

� Triangular Matrix on Wikipedia.
https://en.wikipedia.org/wiki/Triangular_matrix

� Diagonal matrix on Wikipedia.
https://en.wikipedia.org/wiki/Diagonal_matrix

� Identity matrix on Wikipedia.
https://en.wikipedia.org/wiki/Identity_matrix

� Orthogonal matrix on Wikipedia.
https://en.wikipedia.org/wiki/Orthogonal_matrix

10.10 Summary

In this tutorial, you discovered a suite of different types of matrices from the field of linear
algebra that you may encounter in machine learning. Specifically, you learned:

� Square, symmetric, triangular, and diagonal matrices that are much as their name suggests.

� Identity matrices that are all zero values except along the main diagonal where the values
are 1.

� Orthogonal matrices that generalize the idea of perpendicular vectors and have useful
computational properties.

10.10.1 Next

In the next chapter you will discover basic operations that you can perform on matrices.

https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Main_diagonal
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Identity_matrix
https://en.wikipedia.org/wiki/Orthogonal_matrix

Chapter 11

Matrix Operations

Matrix operations are used in the description of many machine learning algorithms. Some
operations can be used directly to solve key equations, whereas others provide useful shorthand
or foundation in the description and the use of more complex matrix operations. In this tutorial,
you will discover important linear algebra matrix operations used in the description of machine
learning methods. After completing this tutorial, you will know:

� The Transpose operation for flipping the dimensions of a matrix.

� The Inverse operations used in solving systems of linear equations.

� The Trace and Determinant operations used as shorthand notation in other matrix
operations.

Let’s get started.

11.1 Tutorial Overview

This tutorial is divided into 5 parts; they are:

1. Transpose

2. Inverse

3. Trace

4. Determinant

5. Rank

11.2 Transpose

A defined matrix can be transposed, which creates a new matrix with the number of columns
and rows flipped. This is denoted by the superscript T next to the matrix AT .

C = AT (11.1)

80

11.3. Inverse 81

An invisible diagonal line can be drawn through the matrix from top left to bottom right on
which the matrix can be flipped to give the transpose.

A =

1 2
3 4
5 6

 (11.2)

AT =

(
1 3 5
2 4 6

)
(11.3)

The operation has no effect if the matrix is symmetrical, e.g. has the same number of
columns and rows and the same values at the same locations on both sides of the invisible
diagonal line.

The columns of AT are the rows of A.

— Page 109, Introduction to Linear Algebra, Fifth Edition, 2016.

We can transpose a matrix in NumPy by calling the T attribute.

transpose matrix

from numpy import array

define matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

calculate transpose

C = A.T

print(C)

Listing 11.1: Example of creating a transpose of a matrix.

Running the example first prints the matrix as it is defined, then the transposed version.

[[1 2]

[3 4]

[5 6]]

[[1 3 5]

[2 4 6]]

Listing 11.2: Sample output from creating a transpose of a matrix.

The transpose operation provides a short notation used as an element in many matrix
operations.

11.3 Inverse

Matrix inversion is a process that finds another matrix that when multiplied with the matrix,
results in an identity matrix. Given a matrix A, find matrix B, such that AB = In or BA = In.

AB = BA = In (11.4)

11.3. Inverse 82

The operation of inverting a matrix is indicated by a −1 superscript next to the matrix; for
example, A−1. The result of the operation is referred to as the inverse of the original matrix;
for example, B is the inverse of A.

B = A−1 (11.5)

A matrix is invertible if there exists another matrix that results in the identity matrix, where
not all matrices are invertible. A square matrix that is not invertible is referred to as singular.

Whatever A does, A−1 undoes.

— Page 83, Introduction to Linear Algebra, Fifth Edition, 2016.

The matrix inversion operation is not computed directly, but rather the inverted matrix is
discovered through a numerical operation, where a suite of efficient methods may be used, often
involving forms of matrix decomposition.

However, A1 is primarily useful as a theoretical tool, and should not actually be
used in practice for most software applications.

— Page 37, Deep Learning, 2016.

A matrix can be inverted in NumPy using the inv() function.

invert matrix

from numpy import array

from numpy.linalg import inv

define matrix

A = array([

[1.0, 2.0],

[3.0, 4.0]])

print(A)

invert matrix

B = inv(A)

print(B)

multiply A and B

I = A.dot(B)

print(I)

Listing 11.3: Example of creating the inverse of a matrix.

First, we define a small 2 × 2 matrix, then calculate the inverse of the matrix, and then
confirm the inverse by multiplying it with the original matrix to give the identity matrix.
Running the example prints the original, inverse, and identity matrices.

[[1. 2.]

[3. 4.]]

[[-2. 1.]

[1.5 -0.5]]

[[1.00000000e+00 0.00000000e+00]

[8.88178420e-16 1.00000000e+00]]

Listing 11.4: Sample output from creating the inverse of a matrix.

11.4. Trace 83

Note, your specific results may vary given differences in floating point precision on different
hardware and software versions. Matrix inversion is used as an operation in solving systems of
equations framed as matrix equations where we are interested in finding vectors of unknowns.
A good example is in finding the vector of coefficient values in linear regression.

11.4 Trace

A trace of a square matrix is the sum of the values on the main diagonal of the matrix (top-left
to bottom-right).

The trace operator gives the sum of all of the diagonal entries of a matrix

— Page 46, Deep Learning, 2016.

The operation of calculating a trace on a square matrix is described using the notation tr(A)
where A is the square matrix on which the operation is being performed.

tr(A) (11.6)

The trace is calculated as the sum of the diagonal values; for example, in the case of a 3× 3
matrix:

tr(A) = a1,1 + a2,2 + a3,3 (11.7)

Or, using array notation:

tr(A) = A[0, 0] + A[1, 1] + A[2, 2] (11.8)

We can calculate the trace of a matrix in NumPy using the trace() function.

matrix trace

from numpy import array

from numpy import trace

define matrix

A = array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

print(A)

calculate trace

B = trace(A)

print(B)

Listing 11.5: Example of creating the trace of a matrix.

First, a 3× 3 matrix is created and then the trace is calculated. Running the example, first
the array is printed and then the trace.

[[1 2 3]

[4 5 6]

[7 8 9]]

15

Listing 11.6: Sample output from creating the trace of a matrix.

11.5. Determinant 84

Alone, the trace operation is not interesting, but it offers a simpler notation and it is used
as an element in other key matrix operations.

11.5 Determinant

The determinant of a square matrix is a scalar representation of the volume of the matrix.

The determinant describes the relative geometry of the vectors that make up the
rows of the matrix. More specifically, the determinant of a matrix A tells you the
volume of a box with sides given by rows of A.

— Page 119, No Bullshit Guide To Linear Algebra, 2017.

It is denoted by the det(A) notation or |A|, where A is the matrix on which we are calculating
the determinant.

det(A) (11.9)

The determinant of a square matrix is calculated from the elements of the matrix. More
technically, the determinant is the product of all the eigenvalues of the matrix. Eigenvalues
are introduced in the lessons on matrix factorization. The intuition for the determinant is
that it describes the way a matrix will scale another matrix when they are multiplied together.
For example, a determinant of 1 preserves the space of the other matrix. A determinant of 0
indicates that the matrix cannot be inverted.

The determinant of a square matrix is a single number. [...] It tells immediately
whether the matrix is invertible. The determinant is a zero when the matrix has no
inverse.

— Page 247, Introduction to Linear Algebra, Fifth Edition, 2016.

In NumPy, the determinant of a matrix can be calculated using the det() function.

matrix determinant

from numpy import array

from numpy.linalg import det

define matrix

A = array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

print(A)

calculate determinant

B = det(A)

print(B)

Listing 11.7: Example of creating the determinant of a matrix.

First, a 3× 3 matrix is defined, then the determinant of the matrix is calculated. Running
the example first prints the defined matrix and then the determinant of the matrix.

11.6. Rank 85

[[1 2 3]

[4 5 6]

[7 8 9]]

-9.51619735393e-16

Listing 11.8: Sample output from creating the determinant of a matrix.

Like the trace operation, alone, the determinant operation is not interesting, but it offers a
simpler notation and it is used as an element in other key matrix operations.

11.6 Rank

The rank of a matrix is the estimate of the number of linearly independent rows or columns in
a matrix. The rank of a matrix M is often denoted as the function rank().

rank(A) (11.10)

An intuition for rank is to consider it the number of dimensions spanned by all of the vectors
within a matrix. For example, a rank of 0 suggest all vectors span a point, a rank of 1 suggests
all vectors span a line, a rank of 2 suggests all vectors span a two-dimensional plane. The rank
is estimated numerically, often using a matrix decomposition method. A common approach is to
use the Singular-Value Decomposition or SVD for short. NumPy provides the matrix rank()

function for calculating the rank of an array. It uses the SVD method to estimate the rank. The
example below demonstrates calculating the rank of a matrix with scalar values and another
vector with all zero values.

vector rank

from numpy import array

from numpy.linalg import matrix_rank

rank

v1 = array([1,2,3])

print(v1)

vr1 = matrix_rank(v1)

print(vr1)

zero rank

v2 = array([0,0,0,0,0])

print(v2)

vr2 = matrix_rank(v2)

print(vr2)

Listing 11.9: Example of calculating the rank of vectors.

Running the example prints the first vector and its rank of 1, followed by the second zero
vector and its rank of 0.

[1 2 3]

1

[0 0 0 0 0]

0

11.6. Rank 86

Listing 11.10: Sample output from creating the rank of vectors.

The next example makes it clear that the rank is not the number of dimensions of the
matrix, but the number of linearly independent directions. Three examples of a 2× 2 matrix
are provided demonstrating matrices with rank 0, 1 and 2.

matrix rank

from numpy import array

from numpy.linalg import matrix_rank

rank 0

M0 = array([

[0,0],

[0,0]])

print(M0)

mr0 = matrix_rank(M0)

print(mr0)

rank 1

M1 = array([

[1,2],

[1,2]])

print(M1)

mr1 = matrix_rank(M1)

print(mr1)

rank 2

M2 = array([

[1,2],

[3,4]])

print(M2)

mr2 = matrix_rank(M2)

print(mr2)

Listing 11.11: Example of creating the rank of matrices.

Running the example first prints a zero 2× 2 matrix followed by the rank, then a 2× 2 with
a rank 1 and finally a 2× 2 matrix with a rank of 2.

[[0 0]

[0 0]]

0

[[1 2]

[1 2]]

1

[[1 2]

[3 4]]

2

Listing 11.12: Sample output from creating the rank of matrices.

11.7. Extensions 87

11.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Modify each example using your own small contrived array data.

� Write your own functions to implement one operation.

� Research one example where each operation was used in machine learning.

If you explore any of these extensions, I’d love to know.

11.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

11.8.1 Books

� Section 3.4 Determinants. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Section 3.5 Matrix inverse. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Section 5.1 The Properties of Determinants, Introduction to Linear Algebra, Fifth Edition,
2016.
http://amzn.to/2AZ7R8j

� Section 2.3 Identity and Inverse Matrices, Deep Learning, 2016.
http://amzn.to/2B3MsuU

� Section 2.11 The Determinant, Deep Learning, 2016.
http://amzn.to/2B3MsuU

� Section 3.D Invertibility and Isomorphic Vector Spaces, Linear Algebra Done Right, Third
Edition, 2015.
http://amzn.to/2BGuEqI

� Section 10.A Trace, Linear Algebra Done Right, Third Edition, 2015.
http://amzn.to/2BGuEqI

� Section 10.B Determinant, Linear Algebra Done Right, Third Edition, 2015.
http://amzn.to/2BGuEqI

http://amzn.to/2k76D4
http://amzn.to/2k76D4
http://amzn.to/2AZ7R8j
http://amzn.to/2B3MsuU
http://amzn.to/2B3MsuU
http://amzn.to/2BGuEqI
http://amzn.to/2BGuEqI
http://amzn.to/2BGuEqI

11.9. Summary 88

11.8.2 API

� numpy.ndarray.T API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.T.

html

� numpy.linalg.inv() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.

html

� numpy.trace() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.trace.html

� numpy.linalg.det() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.det.

html

� numpy.linalg.matrix rank() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.matrix_

rank.html

11.8.3 Articles

� Transpose on Wikipedia.
https://en.wikipedia.org/wiki/Transpose

� Invertible matrix on Wikipedia.
https://en.wikipedia.org/wiki/Invertible_matrix

� Trace (linear algebra) on Wikipedia.
https://en.wikipedia.org/wiki/Trace_(linear_algebra)

� Determinant on Wikipedia.
https://en.wikipedia.org/wiki/Determinant

� Rank (linear algebra) on Wikipedia.
https://en.wikipedia.org/wiki/Rank_(linear_algebra)

11.9 Summary

In this tutorial, you discovered important linear algebra matrix operations used in the description
of machine learning methods. Specifically, you learned:

� The Transpose operation for flipping the dimensions of a matrix.

� The Inverse operations used in solving systems of linear equations.

� The Trace and Determinant operations used as shorthand notation in other matrix
operations.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.T.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.T.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.trace.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.det.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.det.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.matrix_rank.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.matrix_rank.html
https://en.wikipedia.org/wiki/Transpose
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Rank_(linear_algebra)

11.9. Summary 89

11.9.1 Next

In the next chapter you will discover sparsity and sparse matrices.

Chapter 12

Sparse Matrices

Matrices that contain mostly zero values are called sparse, distinct from matrices where most
of the values are non-zero, called dense. Large sparse matrices are common in general and
especially in applied machine learning, such as in data that contains counts, data encodings
that map categories to counts, and even in whole subfields of machine learning such as natural
language processing. It is computationally expensive to represent and work with sparse matrices
as though they are dense, and much improvement in performance can be achieved by using
representations and operations that specifically handle the matrix sparsity. In this tutorial, you
will discover sparse matrices, the issues they present, and how to work with them directly in
Python. After completing this tutorial, you will know:

� That sparse matrices contain mostly zero values and are distinct from dense matrices.

� The myriad of areas where you are likely to encounter sparse matrices in data, data
preparation, and sub-fields of machine learning.

� That there are many efficient ways to store and work with sparse matrices and SciPy
provides implementations that you can use directly.

Let’s get started.

12.1 Tutorial Overview

This tutorial is divided into 5 parts; they are:

1. Sparse Matrix

2. Problems with Sparsity

3. Sparse Matrices in Machine Learning

4. Working with Sparse Matrices

5. Sparse Matrices in Python

90

12.2. Sparse Matrix 91

12.2 Sparse Matrix

A sparse matrix is a matrix that is comprised of mostly zero values. Sparse matrices are distinct
from matrices with mostly non-zero values, which are referred to as dense matrices.

A matrix is sparse if many of its coefficients are zero. The interest in sparsity arises
because its exploitation can lead to enormous computational savings and because
many large matrix problems that occur in practice are sparse.

— Page 1, Direct Methods for Sparse Matrices, Second Edition, 2017.

The sparsity of a matrix can be quantified with a score, which is the number of zero values
in the matrix divided by the total number of elements in the matrix.

sparsity =
count of non-zero elements

total elements
(12.1)

Below is an example of a small 3× 6 sparse matrix.

A =

1 0 0 1 0 0
0 0 2 0 0 1
0 0 0 2 0 0

 (12.2)

The example has 13 zero values of the 18 elements in the matrix, giving this matrix a sparsity
score of 0.722 or about 72%.

12.3 Problems with Sparsity

Sparse matrices can cause problems with regards to space and time complexity.

12.3.1 Space Complexity

Very large matrices require a lot of memory, and some very large matrices that we wish to work
with are sparse.

In practice, most large matrices are sparse — almost all entries are zeros.

— Page 465, Introduction to Linear Algebra, Fifth Edition, 2016.

An example of a very large matrix that is too large to be stored in memory is a link matrix
that shows the links from one website to another. An example of a smaller sparse matrix might
be a word or term occurrence matrix for words in one book against all known words in English.
In both cases, the matrix contained is sparse with many more zero values than data values. The
problem with representing these sparse matrices as dense matrices is that memory is required
and must be allocated for each 32-bit or even 64-bit zero value in the matrix. This is clearly a
waste of memory resources as those zero values do not contain any information.

12.4. Sparse Matrices in Machine Learning 92

12.3.2 Time Complexity

Assuming a very large sparse matrix can be fit into memory, we will want to perform operations
on this matrix. Simply, if the matrix contains mostly zero-values, i.e. no data, then performing
operations across this matrix may take a long time where the bulk of the computation performed
will involve adding or multiplying zero values together.

It is wasteful to use general methods of linear algebra on such problems, because
most of the O(N3) arithmetic operations devoted to solving the set of equations or
inverting the matrix involve zero operands.

— Page 75, Numerical Recipes: The Art of Scientific Computing, Third Edition, 2007.

This is a problem of increased time complexity of matrix operations that increases with the
size of the matrix. This problem is compounded when we consider that even trivial machine
learning methods may require many operations on each row, column, or even across the entire
matrix, resulting in vastly longer execution times.

12.4 Sparse Matrices in Machine Learning

Sparse matrices turn up a lot in applied machine learning. In this section, we will look at some
common examples to motivate you to be aware of the issues of sparsity.

12.4.1 Data

Sparse matrices come up in some specific types of data, most notably observations that record
the occurrence or count of an activity. Three examples include:

� Whether or not a user has watched a movie in a movie catalog.

� Whether or not a user has purchased a product in a product catalog.

� Count of the number of listens of a song in a song catalog.

12.4.2 Data Preparation

Sparse matrices come up in encoding schemes used in the preparation of data. Three common
examples include:

� One hot encoding, used to represent categorical data as sparse binary vectors.

� Count encoding, used to represent the frequency of words in a vocabulary for a document

� TF-IDF encoding, used to represent normalized word frequency scores in a vocabulary.

12.5. Working with Sparse Matrices 93

12.4.3 Areas of Study

Some areas of study within machine learning must develop specialized methods to address
sparsity directly as the input data is almost always sparse. Three examples include:

� Natural language processing for working with documents of text.

� Recommender systems for working with product usage within a catalog.

� Computer vision when working with images that contain lots of black pixels.

If there are 100,000 words in the language model, then the feature vector has length
100,000, but for a short email message almost all the features will have count zero.

— Page 22, Artificial Intelligence: A Modern Approach, Third Edition, 2009.

12.5 Working with Sparse Matrices

The solution to representing and working with sparse matrices is to use an alternate data
structure to represent the sparse data. The zero values can be ignored and only the data or
non-zero values in the sparse matrix need to be stored or acted upon. There are multiple data
structures that can be used to efficiently construct a sparse matrix; three common examples are
listed below.

� Dictionary of Keys. A dictionary is used where a row and column index is mapped to
a value.

� List of Lists. Each row of the matrix is stored as a list, with each sublist containing the
column index and the value.

� Coordinate List. A list of tuples is stored with each tuple containing the row index,
column index, and the value.

There are also data structures that are more suitable for performing efficient operations; two
commonly used examples are listed below.

� Compressed Sparse Row. The sparse matrix is represented using three one-dimensional
arrays for the non-zero values, the extents of the rows, and the column indexes.

� Compressed Sparse Column. The same as the Compressed Sparse Row method except
the column indices are compressed and read first before the row indices.

The Compressed Sparse Row, also called CSR for short, is often used to represent sparse
matrices in machine learning given the efficient access and matrix multiplication that it supports.

12.6. Sparse Matrices in Python 94

12.6 Sparse Matrices in Python

SciPy provides tools for creating sparse matrices using multiple data structures, as well as
tools for converting a dense matrix to a sparse matrix. Many linear algebra NumPy and
SciPy functions that operate on NumPy arrays can transparently operate on SciPy sparse
arrays. Further, machine learning libraries that use NumPy data structures can also operate
transparently on SciPy sparse arrays, such as scikit-learn for general machine learning and Keras
for deep learning.

A dense matrix stored in a NumPy array can be converted into a sparse matrix using the
CSR representation by calling the csr matrix() function. In the example below, we define a
3×6 sparse matrix as a dense array (e.g. an ndarray), convert it to a CSR sparse representation,
and then convert it back to a dense array by calling the todense() function.

sparse matrix

from numpy import array

from scipy.sparse import csr_matrix

create dense matrix

A = array([

[1, 0, 0, 1, 0, 0],

[0, 0, 2, 0, 0, 1],

[0, 0, 0, 2, 0, 0]])

print(A)

convert to sparse matrix (CSR method)

S = csr_matrix(A)

print(S)

reconstruct dense matrix

B = S.todense()

print(B)

Listing 12.1: Example of converting between dense and sparse matrices.

Running the example first prints the defined dense array, followed by the CSR representation,
and then the reconstructed dense matrix.

[[1 0 0 1 0 0]

[0 0 2 0 0 1]

[0 0 0 2 0 0]]

(0, 0) 1

(0, 3) 1

(1, 2) 2

(1, 5) 1

(2, 3) 2

[[1 0 0 1 0 0]

[0 0 2 0 0 1]

[0 0 0 2 0 0]]

Listing 12.2: Sample output from converting between dense and sparse matrices.

NumPy does not provide a function to calculate the sparsity of a matrix. Nevertheless, we
can calculate it easily by first finding the density of the matrix and subtracting it from one. The
number of non-zero elements in a NumPy array can be given by the count nonzero() function
and the total number of elements in the array can be given by the size property of the array.
Array sparsity can therefore be calculated as

12.7. Extensions 95

sparsity = 1.0 - count_nonzero(A) / A.size

Listing 12.3: Example of the manual sparsity calculation.

The example below demonstrates how to calculate the sparsity of an array.

sparsity calculation

from numpy import array

from numpy import count_nonzero

create dense matrix

A = array([

[1, 0, 0, 1, 0, 0],

[0, 0, 2, 0, 0, 1],

[0, 0, 0, 2, 0, 0]])

print(A)

calculate sparsity

sparsity = 1.0 - count_nonzero(A) / A.size

print(sparsity)

Listing 12.4: Example of calculating sparsity.

Running the example first prints the defined sparse matrix followed by the sparsity of the
matrix.

[[1 0 0 1 0 0]

[0 0 2 0 0 1]

[0 0 0 2 0 0]]

0.7222222222222222

Listing 12.5: Sample output from calculating sparsity.

12.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Develop your own examples for converting a dense array to sparse and calculating sparsity.

� Develop an example for the each sparse matrix representation method supported by SciPy.

� Select one sparsity representation method and implement it yourself from scratch.

If you explore any of these extensions, I’d love to know.

12.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

12.9. Summary 96

12.8.1 Books

� Introduction to Linear Algebra, Fifth Edition, 2016.
http://amzn.to/2AZ7R8j

� Section 2.7 Sparse Linear Systems, Numerical Recipes: The Art of Scientific Computing,
Third Edition, 2007.
http://amzn.to/2CF5atj

� Artificial Intelligence: A Modern Approach, Third Edition, 2009.
http://amzn.to/2C4LhMW

� Direct Methods for Sparse Matrices, Second Edition, 2017.
http://amzn.to/2DcsQVU

12.8.2 API

� Sparse matrices (scipy.sparse) API.
https://docs.scipy.org/doc/scipy/reference/sparse.html

� scipy.sparse.csr matrix() API.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.

html

� numpy.count nonzero() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.count_nonzero.

html

� numpy.ndarray.size API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.size.

html

12.8.3 Articles

� Sparse matrix on Wikipedia.
https://en.wikipedia.org/wiki/Sparse_matrix

12.9 Summary

In this tutorial, you discovered sparse matrices, the issues they present, and how to work with
them directly in Python. Specifically, you learned:

� That sparse matrices contain mostly zero values and are distinct from dense matrices.

� The myriad of areas where you are likely to encounter sparse matrices in data, data
preparation, and sub-fields of machine learning.

� That there are many efficient ways to store and work with sparse matrices and SciPy
provides implementations that you can use directly.

http://amzn.to/2AZ7R8j
http://amzn.to/2CF5atj
http://amzn.to/2C4LhMW
http://amzn.to/2DcsQVU
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.count_nonzero.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.count_nonzero.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.size.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.size.html
https://en.wikipedia.org/wiki/Sparse_matrix

12.9. Summary 97

12.9.1 Next

In the next chapter you will discover tensors and tensor arithmetic.

Chapter 13

Tensors and Tensor Arithmetic

In deep learning it is common to see a lot of discussion around tensors as the cornerstone
data structure. Tensor even appears in name of Google’s flagship machine learning library:
TensorFlow. Tensors are a type of data structure used in linear algebra, and like vectors and
matrices, you can calculate arithmetic operations with tensors. In this tutorial, you will discover
what tensors are and how to manipulate them in Python with NumPy. After completing this
tutorial, you will know:

� That tensors are a generalization of matrices and are represented using n-dimensional
arrays.

� How to implement element-wise operations with tensors.

� How to perform the tensor product.

Let’s get started.

13.1 Tutorial Overview

This tutorial is divided into 3 parts; they are:

1. What are Tensors

2. Tensors in Python

3. Tensor Arithmetic

4. Tensor Product

13.2 What are Tensors

A tensor is a generalization of vectors and matrices and is easily understood as a multidimensional
array.

In the general case, an array of numbers arranged on a regular grid with a variable
number of axes is known as a tensor.

98

13.3. Tensors in Python 99

— Page 33, Deep Learning, 2016.

A vector is a one-dimensional or first order tensor and a matrix is a two-dimensional or second
order tensor. Tensor notation is much like matrix notation with a capital letter representing a
tensor and lowercase letters with subscript integers representing scalar values within the tensor.
For example, below defines a 3× 3× 3 three-dimensional tensor T with dimensions index as
ti,j,k.

T =

t1,1,1 t1,2,1 t1,3,1
t2,1,1 t2,2,1 t2,3,1
t3,1,1 t3,2,1 t3,3,1

 ,

t1,1,2 t1,2,2 t1,3,2
t2,1,2 t2,2,2 t2,3,2
t3,1,2 t3,2,2 t3,3,2

 ,

t1,1,3 t1,2,3 t1,3,3
t2,1,3 t2,2,3 t2,3,3
t3,1,3 t3,2,3 t3,3,3

 (13.1)

Many of the operations that can be performed with scalars, vectors, and matrices can be
reformulated to be performed with tensors. As a tool, tensors and tensor algebra is widely
used in the fields of physics and engineering. Some operations in machine learning such as the
training and operation of deep learning models can be described in terms of tensors.

13.3 Tensors in Python

Like vectors and matrices, tensors can be represented in Python using the N-dimensional array
(ndarray). A tensor can be defined in-line to the constructor of array() as a list of lists. The
example below defines a 3× 3× 3 tensor as a NumPy ndarray. Three dimensions is easier to
wrap your head around. Here, we first define rows, then a list of rows stacked as columns, then
a list of columns stacked as levels in a cube.

create tensor

from numpy import array

T = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

print(T.shape)

print(T)

Listing 13.1: Example of creating a tensor.

Running the example first prints the shape of the tensor, then the values of the tensor itself.
You can see that, at least in three-dimensions, the tensor is printed as a series of matrices, one
for each layer. For this 3D tensor, axis 0 specifies the level (like height), axis 1 specifies the
column, and axis 2 specifies the row.

(3, 3, 3)

[[[1 2 3]

[4 5 6]

[7 8 9]]

[[11 12 13]

[14 15 16]

[17 18 19]]

[[21 22 23]

[24 25 26]

13.4. Tensor Arithmetic 100

[27 28 29]]]

Listing 13.2: Sample output from creating a tensor.

13.4 Tensor Arithmetic

As with matrices, we can perform element-wise arithmetic between tensors. In this section, we
will work through the four main arithmetic operations.

13.4.1 Tensor Addition

The element-wise addition of two tensors with the same dimensions results in a new tensor with
the same dimensions where each scalar value is the element-wise addition of the scalars in the
parent tensors.

A =

(
a1,1,1 a1,2,1 a1,3,1
a2,1,1 a2,2,1 a2,3,1

)
,

(
a1,1,2 a1,2,2 a1,3,2
a2,1,2 a2,2,2 a2,3,2

)
(13.2)

B =

(
b1,1,1 b1,2,1 b1,3,1
b2,1,1 b2,2,1 b2,3,1

)
,

(
b1,1,2 b1,2,2 b1,3,2
b2,1,2 b2,2,2 b2,3,2

)
(13.3)

C = A+B (13.4)

C =

(
a1,1,1 + b1,1,1 a1,2,1 + b1,2,1 a1,3,1 + b1,3,1
a2,1,1 + b2,1,1 a2,2,1 + b2,2,1 a2,3,1 + b2,3,1

)
,

(
a1,1,2 + b1,1,2 a1,2,2 + b1,2,2 a1,3,2 + b1,3,2
a2,1,2 + b2,1,2 a2,2,2 + b2,2,2 a2,3,2 + b2,3,2

)
(13.5)

In NumPy, we can add tensors directly by adding arrays.

tensor addition

from numpy import array

define first tensor

A = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

define second tensor

B = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

add tensors

C = A + B

print(C)

Listing 13.3: Example of adding tensors.

Running the example prints the addition of the two parent tensors.

13.4. Tensor Arithmetic 101

[[[2 4 6]

[8 10 12]

[14 16 18]]

[[22 24 26]

[28 30 32]

[34 36 38]]

[[42 44 46]

[48 50 52]

[54 56 58]]]

Listing 13.4: Sample output from adding tensors.

13.4.2 Tensor Subtraction

The element-wise subtraction of one tensor from another tensor with the same dimensions
results in a new tensor with the same dimensions where each scalar value is the element-wise
subtraction of the scalars in the parent tensors.

A =

(
a1,1,1 a1,2,1 a1,3,1
a2,1,1 a2,2,1 a2,3,1

)
,

(
a1,1,2 a1,2,2 a1,3,2
a2,1,2 a2,2,2 a2,3,2

)
(13.6)

B =

(
b1,1,1 b1,2,1 b1,3,1
b2,1,1 b2,2,1 b2,3,1

)
,

(
b1,1,2 b1,2,2 b1,3,2
b2,1,2 b2,2,2 b2,3,2

)
(13.7)

C = A−B (13.8)

C =

(
a1,1,1 − b1,1,1 a1,2,1 − b1,2,1 a1,3,1 − b1,3,1
a2,1,1 − b2,1,1 a2,2,1 − b2,2,1 a2,3,1 − b2,3,1

)
,

(
a1,1,2 − b1,1,2 a1,2,2 − b1,2,2 a1,3,2 − b1,3,2
a2,1,2 − b2,1,2 a2,2,2 − b2,2,2 a2,3,2 − b2,3,2

)
(13.9)

In NumPy, we can subtract tensors directly by subtracting arrays.

tensor subtraction

from numpy import array

define first tensor

A = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

define second tensor

B = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

subtract tensors

C = A - B

print(C)

Listing 13.5: Example of subtracting tensors.

13.4. Tensor Arithmetic 102

Running the example prints the result of subtracting the first tensor from the second.

[[[0 0 0]

[0 0 0]

[0 0 0]]

[[0 0 0]

[0 0 0]

[0 0 0]]

[[0 0 0]

[0 0 0]

[0 0 0]]]

Listing 13.6: Sample output from subtracting tensors.

13.4.3 Tensor Hadamard Product

The element-wise multiplication of one tensor with another tensor with the same dimensions
results in a new tensor with the same dimensions where each scalar value is the element-wise
multiplication of the scalars in the parent tensors. As with matrices, the operation is referred to
as the Hadamard Product to differentiate it from tensor multiplication. Here, we will use the ◦
operator to indicate the Hadamard product operation between tensors.

A =

(
a1,1,1 a1,2,1 a1,3,1
a2,1,1 a2,2,1 a2,3,1

)
,

(
a1,1,2 a1,2,2 a1,3,2
a2,1,2 a2,2,2 a2,3,2

)
(13.10)

B =

(
b1,1,1 b1,2,1 b1,3,1
b2,1,1 b2,2,1 b2,3,1

)
,

(
b1,1,2 b1,2,2 b1,3,2
b2,1,2 b2,2,2 b2,3,2

)
(13.11)

C = A ◦B (13.12)

C =

(
a1,1,1 × b1,1,1 a1,2,1 × b1,2,1 a1,3,1 × b1,3,1
a2,1,1 × b2,1,1 a2,2,1 × b2,2,1 a2,3,1 × b2,3,1

)
,

(
a1,1,2 × b1,1,2 a1,2,2 × b1,2,2 a1,3,2 × b1,3,2
a2,1,2 × b2,1,2 a2,2,2 × b2,2,2 a2,3,2 × b2,3,2

)
(13.13)

In NumPy, we can multiply tensors directly by multiplying arrays.

tensor Hadamard product

from numpy import array

define first tensor

A = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

define second tensor

B = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

multiply tensors

C = A * B

print(C)

13.4. Tensor Arithmetic 103

Listing 13.7: Example of tensor Hadamard product.

Running the example prints the result of multiplying the tensors.

[[[1 4 9]

[16 25 36]

[49 64 81]]

[[121 144 169]

[196 225 256]

[289 324 361]]

[[441 484 529]

[576 625 676]

[729 784 841]]]

Listing 13.8: Sample output from tensor Hadamard product.

13.4.4 Tensor Division

The element-wise division of one tensor with another tensor with the same dimensions results in
a new tensor with the same dimensions where each scalar value is the element-wise division of
the scalars in the parent tensors.

A =

(
a1,1,1 a1,2,1 a1,3,1
a2,1,1 a2,2,1 a2,3,1

)
,

(
a1,1,2 a1,2,2 a1,3,2
a2,1,2 a2,2,2 a2,3,2

)
(13.14)

B =

(
b1,1,1 b1,2,1 b1,3,1
b2,1,1 b2,2,1 b2,3,1

)
,

(
b1,1,2 b1,2,2 b1,3,2
b2,1,2 b2,2,2 b2,3,2

)
(13.15)

C =
A

B
(13.16)

C =

(
a1,1,1
b1,1,1

a1,2,1
b1,2,1

a1,3,1
b1,3,1

a2,1,1
b2,1,1

a2,2,1
b2,2,1

a2,3,1
b2,3,1

)
,

(
a1,1,2
b1,1,2

a1,2,2
b1,2,2

a1,3,2
b1,3,2

a2,1,2
b2,1,2

a2,2,2
b2,2,2

a2,3,2
b2,3,2

)
(13.17)

In NumPy, we can divide tensors directly by dividing arrays.

tensor division

from numpy import array

define first tensor

A = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

define second tensor

B = array([

[[1,2,3], [4,5,6], [7,8,9]],

[[11,12,13], [14,15,16], [17,18,19]],

[[21,22,23], [24,25,26], [27,28,29]]])

divide tensors

C = A / B

13.5. Tensor Product 104

print(C)

Listing 13.9: Example of diving tensors.

Running the example prints the result of dividing the tensors.

[[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]]

Listing 13.10: Sample output from dividing tensors.

13.5 Tensor Product

The tensor product operator is often denoted as a circle with a small x in the middle. We will
denote it here as ⊗. Given a tensor A with q dimensions and tensor B with r dimensions, the
product of these tensors will be a new tensor with the order of q + r or, said another way, q + r
dimensions. The tensor product is not limited to tensors, but can also be performed on matrices
and vectors, which can be a good place to practice in order to develop the intuition for higher
dimensions. Let’s take a look at the tensor product for vectors.

a =

(
a1
a2

)
(13.18)

b =

(
b1
b2

)
(13.19)

C = a⊗ b (13.20)

C =

a1 ×
(
b1
b2

)
a2 ×

(
b1
b2

)
 (13.21)

Or, unrolled:

C =

(
a1 × b1 a1 × b2
a2 × b1 a2 × b2

)
(13.22)

Let’s take a look at the tensor product for matrices.

A =

(
a1,1 a1,2
a2,1 a2,2

)
(13.23)

13.6. Extensions 105

B =

(
b1,1 b1,2
b2,1 b2,2

)
(13.24)

C = A⊗B (13.25)

C =

a1,1 ×
(
b1,1, b1,2
b2,1, b2,2

)
a1,2 ×

(
b1,1, b1,2
b2,1, b2,2

)
a2,1 ×

(
b1,1, b1,2
b2,1, b2,2

)
a2,2 ×

(
b1,1, b1,2
b2,1, b2,2

)
 (13.26)

Or, unrolled:

C =

a1,1 × b1,1 a1,1 × b1,2 a1,2 × b1,1 a1,2 × b1,2
a1,1 × b2,1 a1,1 × b2,2 a1,2 × b2,1 a1,2 × b2,2
a2,1 × b1,1 a2,1 × b1,2 a2,2 × b1,1 a2,2 × b1,2
a2,1 × b2,1 a2,1 × b2,2 a2,2 × b2,1 a2,2 × b2,2

 (13.27)

The tensor product can be implemented in NumPy using the tensordot() function. The
function takes as arguments the two tensors to be multiplied and the axis on which to sum the
products over, called the sum reduction. To calculate the tensor product, also called the tensor
dot product in NumPy, the axis must be set to 0. In the example below, we define two order-1
tensors (vectors) with and calculate the tensor product.

tensor product

from numpy import array

from numpy import tensordot

define first vector

A = array([1,2])

define second vector

B = array([3,4])

calculate tensor product

C = tensordot(A, B, axes=0)

print(C)

Listing 13.11: Example of tensor product.

Running the example prints the result of the tensor product. The result is an order-2 tensor
(matrix) with the lengths 2× 2.

[[3 4]

[6 8]]

Listing 13.12: Sample output from tensor product.

The tensor product is the most common form of tensor multiplication that you may encounter,
but there are many other types of tensor multiplications that exist, such as the tensor dot
product and the tensor contraction.

13.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

13.7. Further Reading 106

� Update each example using your own small contrived tensor array data.

� Implement three other types of tensor multiplication not covered in this tutorial with
small vector or matrix data.

� Write your own functions to implement each tensor arithmetic operation.

If you explore any of these extensions, I’d love to know.

13.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

13.7.1 Books

� A Student’s Guide to Vectors and Tensors, 2011.
http://amzn.to/2kmUvvF

� Chapter 12, Special Topics, Matrix Computations, 2012.
http://amzn.to/2B9xnLD

� Tensor Algebra and Tensor Analysis for Engineers, 2015.
http://amzn.to/2C6gzCu

13.7.2 API

� The N-dimensional array.
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html

� numpy.tensordot() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.tensordot.

html

13.7.3 Articles

� Tensor algebra on Wikipedia.
https://en.wikipedia.org/wiki/Tensor_algebra

� Tensor on Wikipedia.
https://en.wikipedia.org/wiki/Tensor

� Tensor product on Wikipedia.
https://en.wikipedia.org/wiki/Tensor_product

� Outer product on Wikipedia.
https://en.wikipedia.org/wiki/Outer_product

http://amzn.to/2kmUvvF
http://amzn.to/2B9xnLD
http://amzn.to/2C6gzCu
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.tensordot.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.tensordot.html
https://en.wikipedia.org/wiki/Tensor_algebra
https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Outer_product

13.8. Summary 107

13.8 Summary

In this tutorial, you discovered what tensors are and how to manipulate them in Python with
NumPy. Specifically, you learned:

� That tensors are a generalization of matrices and are represented using n-dimensional
arrays.

� How to implement element-wise operations with tensors.

� How to perform the tensor product.

13.8.1 Next

This was the end of the part on matrices, next is the part on matrix factorization, starting with
a gentle introduction to matrix decomposition methods.

Part V

Factorization

108

Chapter 14

Matrix Decompositions

Many complex matrix operations cannot be solved efficiently or with stability using the limited
precision of computers. Matrix decompositions are methods that reduce a matrix into constituent
parts that make it easier to calculate more complex matrix operations. Matrix decomposition
methods, also called matrix factorization methods, are a foundation of linear algebra in computers,
even for basic operations such as solving systems of linear equations, calculating the inverse, and
calculating the determinant of a matrix. In this tutorial, you will discover matrix decompositions
and how to calculate them in Python. After completing this tutorial, you will know:

� What a matrix decomposition is and why these types of operations are important.

� How to calculate an LU and QR matrix decompositions in Python.

� How to calculate a Cholesky matrix decomposition in Python.

Let’s get started.

14.1 Tutorial Overview

This tutorial is divided into 3 parts; they are:

1. What is a Matrix Decomposition

2. LU Decomposition

3. QR Decomposition

4. Cholesky Decomposition

14.2 What is a Matrix Decomposition

A matrix decomposition is a way of reducing a matrix into its constituent parts. It is an
approach that can simplify more complex matrix operations that can be performed on the
decomposed matrix rather than on the original matrix itself. A common analogy for matrix
decomposition is the factoring of numbers, such as the factoring of 10 into 2× 5. For this reason,
matrix decomposition is also called matrix factorization. Like factoring real values, there are

109

14.3. LU Decomposition 110

many ways to decompose a matrix, hence there are a range of different matrix decomposition
techniques. Two simple and widely used matrix decomposition methods are the LU matrix
decomposition and the QR matrix decomposition. Next, we will take a closer look at each of
these methods.

14.3 LU Decomposition

The LU decomposition is for square matrices and decomposes a matrix into L and U components.

A = L · U (14.1)

Or, without the dot notation.

A = LU (14.2)

Where A is the square matrix that we wish to decompose, L is the lower triangle matrix
and U is the upper triangle matrix.

The factors L and U are triangular matrices. The factorization that comes from
elimination is A = LU .

— Page 97, Introduction to Linear Algebra, Fifth Edition, 2016.

The LU decomposition is found using an iterative numerical process and can fail for those
matrices that cannot be decomposed or decomposed easily. A variation of this decomposition
that is numerically more stable to solve in practice is called the LUP decomposition, or the LU
decomposition with partial pivoting.

A = L · U · P (14.3)

The rows of the parent matrix are re-ordered to simplify the decomposition process and the
additional P matrix specifies a way to permute the result or return the result to the original
order. There are also other variations of the LU. The LU decomposition is often used to simplify
the solving of systems of linear equations, such as finding the coefficients in a linear regression,
as well as in calculating the determinant and inverse of a matrix.

The LU decomposition can be implemented in Python with the lu() function. More
specifically, this function calculates an LPU decomposition. The example below first defines a
3×3 square matrix. The LU decomposition is calculated, then the original matrix is reconstructed
from the components.

LU decomposition

from numpy import array

from scipy.linalg import lu

define a square matrix

A = array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

print(A)

factorize

14.4. QR Decomposition 111

P, L, U = lu(A)

print(P)

print(L)

print(U)

reconstruct

B = P.dot(L).dot(U)

print(B)

Listing 14.1: Example of calculating an LU decomposition.

Running the example first prints the defined 3× 3 matrix, then the P , L, and U components
of the decomposition, then finally the original matrix is reconstructed.

[[1 2 3]

[4 5 6]

[7 8 9]]

[[0. 1. 0.]

[0. 0. 1.]

[1. 0. 0.]]

[[1. 0. 0.]

[0.14285714 1. 0.]

[0.57142857 0.5 1.]]

[[7.00000000e+00 8.00000000e+00 9.00000000e+00]

[0.00000000e+00 8.57142857e-01 1.71428571e+00]

[0.00000000e+00 0.00000000e+00 -1.58603289e-16]]

[[1. 2. 3.]

[4. 5. 6.]

[7. 8. 9.]]

Listing 14.2: Sample output from calculating an LU decomposition.

14.4 QR Decomposition

The QR decomposition is for n×m matrices (not limited to square matrices) and decomposes
a matrix into Q and R components.

A = Q ·R (14.4)

Or, without the dot notation.

A = QR (14.5)

Where A is the matrix that we wish to decompose, Q a matrix with the size m×m, and R is
an upper triangle matrix with the size m×n. The QR decomposition is found using an iterative
numerical method that can fail for those matrices that cannot be decomposed, or decomposed
easily. Like the LU decomposition, the QR decomposition is often used to solve systems of
linear equations, although is not limited to square matrices.

The QR decomposition can be implemented in NumPy using the qr() function. By default,
the function returns the Q and R matrices with smaller or reduced dimensions that is more

14.5. Cholesky Decomposition 112

economical. We can change this to return the expected sizes of m ×m for Q and m × n for
R by specifying the mode argument as ‘complete’, although this is not required for most
applications. The example below defines a 3× 2 matrix, calculates the QR decomposition, then
reconstructs the original matrix from the decomposed elements.

QR decomposition

from numpy import array

from numpy.linalg import qr

define rectangular matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

factorize

Q, R = qr(A, 'complete')

print(Q)

print(R)

reconstruct

B = Q.dot(R)

print(B)

Listing 14.3: Example of calculating an QR decomposition.

Running the example first prints the defined 3× 2 matrix, then the Q and R elements, then
finally the reconstructed matrix that matches what we started with.

[[1 2]

[3 4]

[5 6]]

[[-0.16903085 0.89708523 0.40824829]

[-0.50709255 0.27602622 -0.81649658]

[-0.84515425 -0.34503278 0.40824829]]

[[-5.91607978 -7.43735744]

[0. 0.82807867]

[0. 0.]]

[[1. 2.]

[3. 4.]

[5. 6.]]

Listing 14.4: Sample output from calculating an QR decomposition.

14.5 Cholesky Decomposition

The Cholesky decomposition is for square symmetric matrices where all values are greater than
zero, so-called positive definite matrices. For our interests in machine learning, we will focus on
the Cholesky decomposition for real-valued matrices and ignore the cases when working with
complex numbers. The decomposition is defined as follows:

A = L · LT (14.6)

14.5. Cholesky Decomposition 113

Or without the dot notation:

A = LLT (14.7)

Where A is the matrix being decomposed, L is the lower triangular matrix and LT is the
transpose of L. The decompose can also be written as the product of the upper triangular
matrix, for example:

A = UT · U (14.8)

Where U is the upper triangular matrix. The Cholesky decomposition is used for solving
linear least squares for linear regression, as well as simulation and optimization methods. When
decomposing symmetric matrices, the Cholesky decomposition is nearly twice as efficient as the
LU decomposition and should be preferred in these cases.

While symmetric, positive definite matrices are rather special, they occur quite
frequently in some applications, so their special factorization, called Cholesky de-
composition, is good to know about. When you can use it, Cholesky decomposition
is about a factor of two faster than alternative methods for solving linear equations.

— Page 100, Numerical Recipes: The Art of Scientific Computing, Third Edition, 2007.

The Cholesky decomposition can be implemented in NumPy by calling the cholesky()

function. The function only returns L as we can easily access the L transpose as needed. The
example below defines a 3×3 symmetric and positive definite matrix and calculates the Cholesky
decomposition, then the original matrix is reconstructed.

Cholesky decomposition

from numpy import array

from numpy.linalg import cholesky

define symmetrical matrix

A = array([

[2, 1, 1],

[1, 2, 1],

[1, 1, 2]])

print(A)

factorize

L = cholesky(A)

print(L)

reconstruct

B = L.dot(L.T)

print(B)

Listing 14.5: Example of calculating an Cholesky decomposition.

Running the example first prints the symmetric matrix, then the lower triangular matrix
from the decomposition followed by the reconstructed matrix.

[[2 1 1]

[1 2 1]

[1 1 2]]

[[1.41421356 0. 0.]

[0.70710678 1.22474487 0.]

14.6. Extensions 114

[0.70710678 0.40824829 1.15470054]]

[[2. 1. 1.]

[1. 2. 1.]

[1. 1. 2.]]

Listing 14.6: Sample output from calculating an Cholesky decomposition.

14.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Write a summary of matrix decomposition to explain the principle to other students.

� Create one example using each operation with your own small array data.

� Search machine learning papers and find 1 example of each operation being used.

If you explore any of these extensions, I’d love to know.

14.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

14.7.1 Books

� Section 6.6 Matrix decompositions. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Lecture 7 QR Factorization, Numerical Linear Algebra, 1997.
http://amzn.to/2BI9kRH

� Section 2.3 LU Decomposition and Its Applications, Numerical Recipes: The Art of
Scientific Computing, Third Edition, 2007.
http://amzn.to/2BezVEE

� Section 2.10 QR Decomposition, Numerical Recipes: The Art of Scientific Computing,
Third Edition, 2007.
http://amzn.to/2BezVEE

� Section 2.9 Cholesky Decomposition, Numerical Recipes: The Art of Scientific Computing,
Third Edition, 2007.
http://amzn.to/2BezVEE

� Lecture 23, Cholesky Decomposition, Numerical Linear Algebra, 1997.
http://amzn.to/2BI9kRH

http://amzn.to/2k76D4
http://amzn.to/2BI9kRH
http://amzn.to/2BezVEE
http://amzn.to/2BezVEE
http://amzn.to/2BezVEE
http://amzn.to/2BI9kRH

14.8. Summary 115

14.7.2 API

� scipy.linalg.lu() API.
https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.linalg.lu.

html

� numpy.linalg.qr() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.qr.

html

� numpy.linalg.cholesky() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.cholesky.

html

14.7.3 Articles

� Matrix decomposition on Wikipedia.
https://en.wikipedia.org/wiki/Matrix_decomposition

� LU decomposition on Wikipedia.
https://en.wikipedia.org/wiki/LU_decomposition

� QR Decomposition on Wikipedia.
https://en.wikipedia.org/wiki/QR_decomposition

� Cholesky decomposition on Wikipedia.
https://en.wikipedia.org/wiki/Cholesky_decomposition

14.8 Summary

In this tutorial, you discovered matrix decompositions and how to calculate them in Python.
Specifically, you learned:

� What a matrix decomposition is and why these types of operations are important.

� How to calculate an LU and QR matrix decompositions in Python.

� How to calculate a Cholesky matrix decomposition in Python.

14.8.1 Next

In the next chapter you will discover the eigendecomposition, eigenvalues, and eigenvectors.

https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.linalg.lu.html
https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.linalg.lu.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.qr.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.qr.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.cholesky.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.cholesky.html
https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/Cholesky_decomposition

Chapter 15

Eigendecomposition

Matrix decompositions are a useful tool for reducing a matrix to their constituent parts in
order to simplify a range of more complex operations. Perhaps the most used type of matrix
decomposition is the eigendecomposition that decomposes a matrix into eigenvectors and
eigenvalues. This decomposition also plays a role in methods used in machine learning, such
as in the Principal Component Analysis method or PCA. In this tutorial, you will discover
the eigendecomposition, eigenvectors, and eigenvalues in linear algebra. After completing this
tutorial, you will know:

� What an eigendecomposition is and the role of eigenvectors and eigenvalues.

� How to calculate an eigendecomposition in Python with NumPy.

� How to confirm a vector is an eigenvector and how to reconstruct a matrix from eigenvectors
and eigenvalues.

Let’s get started.

15.1 Tutorial Overview

This tutorial is divided into 5 parts; they are:

1. Eigendecomposition of a Matrix

2. Eigenvectors and Eigenvalues

3. Calculation of Eigendecomposition

4. Confirm an Eigenvector and Eigenvalue

5. Reconstruct Matrix

116

15.2. Eigendecomposition of a Matrix 117

15.2 Eigendecomposition of a Matrix

Eigendecomposition of a matrix is a type of decomposition that involves decomposing a square
matrix into a set of eigenvectors and eigenvalues.

One of the most widely used kinds of matrix decomposition is called eigendecompo-
sition, in which we decompose a matrix into a set of eigenvectors and eigenvalues.

— Page 42, Deep Learning, 2016.

A vector is an eigenvector of a matrix if it satisfies the following equation.

A · v = λ · v (15.1)

This is called the eigenvalue equation, where A is the parent square matrix that we are
decomposing, v is the eigenvector of the matrix, and λ is the lowercase Greek letter lambda and
represents the eigenvalue scalar. Or without the dot notation.

Av = λv (15.2)

A matrix could have one eigenvector and eigenvalue for each dimension of the parent matrix.
Not all square matrices can be decomposed into eigenvectors and eigenvalues, and some can
only be decomposed in a way that requires complex numbers. The parent matrix can be shown
to be a product of the eigenvectors and eigenvalues.

A = Q · Λ ·QT (15.3)

Or, without the dot notation.

A = QΛQT (15.4)

Where Q is a matrix comprised of the eigenvectors, Λ is the uppercase Greek letter lambda
and is the diagonal matrix comprised of the eigenvalues, and QT is the transpose of the matrix
comprised of the eigenvectors.

However, we often want to decompose matrices into their eigenvalues and eigenvectors.
Doing so can help us to analyze certain properties of the matrix, much as decomposing
an integer into its prime factors can help us understand the behavior of that integer.

— Page 43, Deep Learning, 2016.

Eigen is not a name, e.g. the method is not named after “Eigen”; eigen (pronounced
eye-gan) is a German word that means own or innate, as in belonging to the parent matrix. A
decomposition operation does not result in a compression of the matrix; instead, it breaks it
down into constituent parts to make certain operations on the matrix easier to perform. Like
other matrix decomposition methods, Eigendecomposition is used as an element to simplify the
calculation of other more complex matrix operations.

15.3. Eigenvectors and Eigenvalues 118

Almost all vectors change direction, when they are multiplied by A. Certain
exceptional vectors x are in the same direction as Ax. Those are the “eigenvectors”.
Multiply an eigenvector by A, and the vector Ax is the number λ times the original
x. [...] The eigenvalue λ tells whether the special vector x is stretched or shrunk or
reversed or left unchanged — when it is multiplied by A.

— Page 289, Introduction to Linear Algebra, Fifth Edition, 2016.

Eigendecomposition can also be used to calculate the principal components of a matrix in the
Principal Component Analysis method or PCA that can be used to reduce the dimensionality
of data in machine learning.

15.3 Eigenvectors and Eigenvalues

Eigenvectors are unit vectors, which means that their length or magnitude is equal to 1.0. They
are often referred as right vectors, which simply means a column vector (as opposed to a row
vector or a left vector). A right-vector is a vector as we understand them. Eigenvalues are
coefficients applied to eigenvectors that give the vectors their length or magnitude. For example,
a negative eigenvalue may reverse the direction of the eigenvector as part of scaling it. A matrix
that has only positive eigenvalues is referred to as a positive definite matrix, whereas if the
eigenvalues are all negative, it is referred to as a negative definite matrix.

Decomposing a matrix in terms of its eigenvalues and its eigenvectors gives valuable
insights into the properties of the matrix. Certain matrix calculations, like computing
the power of the matrix, become much easier when we use the eigendecomposition
of the matrix.

— Page 262, No Bullshit Guide To Linear Algebra, 2017.

15.4 Calculation of Eigendecomposition

An eigendecomposition is calculated on a square matrix using an efficient iterative algorithm, of
which we will not go into the details. Often an eigenvalue is found first, then an eigenvector is
found to solve the equation as a set of coefficients. The eigendecomposition can be calculated in
NumPy using the eig() function. The example below first defines a 3× 3 square matrix. The
eigendecomposition is calculated on the matrix returning the eigenvalues and eigenvectors.

eigendecomposition

from numpy import array

from numpy.linalg import eig

define matrix

A = array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

print(A)

factorize

values, vectors = eig(A)

15.5. Confirm an Eigenvector and Eigenvalue 119

print(values)

print(vectors)

Listing 15.1: Example of calculating an eigendecomposition.

Running the example first prints the defined matrix, followed by the eigenvalues and the
eigenvectors. More specifically, the eigenvectors are the right-hand side eigenvectors and are
normalized to unit length.

[[1 2 3]

[4 5 6]

[7 8 9]]

[1.61168440e+01 -1.11684397e+00 -9.75918483e-16]

[[-0.23197069 -0.78583024 0.40824829]

[-0.52532209 -0.08675134 -0.81649658]

[-0.8186735 0.61232756 0.40824829]]

Listing 15.2: Sample output from calculating an eigendecomposition.

15.5 Confirm an Eigenvector and Eigenvalue

We can confirm that a vector is indeed an eigenvector of a matrix. We do this by multiplying
the candidate eigenvector by the value vector and comparing the result with the eigenvalue.
First, we will define a matrix, then calculate the eigenvalues and eigenvectors. We will then test
whether the first vector and value are in fact an eigenvalue and eigenvector for the matrix. We
know they are, but it is a good exercise.

The eigenvectors are returned as a matrix with the same dimensions as the parent matrix,
where each column is an eigenvector, e.g. the first eigenvector is vectors[:, 0]. Eigenvalues
are returned as a list, where value indices in the returned array are paired with eigenvectors
by column index, e.g. the first eigenvalue at values[0] is paired with the first eigenvector at
vectors[:, 0].

confirm eigenvector

from numpy import array

from numpy.linalg import eig

define matrix

A = array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

factorize

values, vectors = eig(A)

confirm first eigenvector

B = A.dot(vectors[:, 0])

print(B)

C = vectors[:, 0] * values[0]

print(C)

Listing 15.3: Example of calculating a confirmation of an eigendecomposition.

15.6. Reconstruct Matrix 120

The example multiplies the original matrix with the first eigenvector and compares it to the
first eigenvector multiplied by the first eigenvalue. Running the example prints the results of
these two multiplications that show the same resulting vector, as we would expect.

[-3.73863537 -8.46653421 -13.19443305]

[-3.73863537 -8.46653421 -13.19443305]

Listing 15.4: Sample output from calculating a confirmation of an eigendecomposition.

15.6 Reconstruct Matrix

We can reverse the process and reconstruct the original matrix given only the eigenvectors and
eigenvalues. First, the list of eigenvectors must be taken together as a matrix, where each vector
becomes a row. The eigenvalues need to be arranged into a diagonal matrix. The NumPy
diag() function can be used for this. Next, we need to calculate the inverse of the eigenvector
matrix, which we can achieve with the inv() NumPy function. Finally, these elements need to
be multiplied together with the dot() function.

reconstruct matrix

from numpy import diag

from numpy.linalg import inv

from numpy import array

from numpy.linalg import eig

define matrix

A = array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

print(A)

factorize

values, vectors = eig(A)

create matrix from eigenvectors

Q = vectors

create inverse of eigenvectors matrix

R = inv(Q)

create diagonal matrix from eigenvalues

L = diag(values)

reconstruct the original matrix

B = Q.dot(L).dot(R)

print(B)

Listing 15.5: Example of reconstructing a matrix from an eigendecomposition.

The example calculates the eigenvalues and eigenvectors again and uses them to reconstruct
the original matrix. Running the example first prints the original matrix, then the matrix
reconstructed from eigenvalues and eigenvectors matching the original matrix.

[[1 2 3]

[4 5 6]

[7 8 9]]

[[1. 2. 3.]

[4. 5. 6.]

15.7. Extensions 121

[7. 8. 9.]]

Listing 15.6: Sample output from reconstructing a matrix from an eigendecomposition.

15.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Develop an eigendecomposition and reconstruction of your own small contrived array data.

� List ten high-level operations that make use of the eigendecomposition.

� Implement the eigendecomposition operation from scratch for matrices defined as lists of
lists.

If you explore any of these extensions, I’d love to know.

15.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

15.8.1 Books

� Section 6.1 Eigenvalues and eigenvectors. No Bullshit Guide To Linear Algebra, 2017.
http://amzn.to/2k76D4

� Chapter 6 Eigenvalues and Eigenvectors, Introduction to Linear Algebra, Fifth Edition,
2016.
http://amzn.to/2AZ7R8j

� Section 2.7 Eigendecomposition, Deep Learning, 2016.
http://amzn.to/2B3MsuU

� Chapter 5 Eigenvalues, Eigenvectors, and Invariant Subspaces, Linear Algebra Done Right,
Third Edition, 2015.
http://amzn.to/2BGuEqI

� Lecture 24, Eigenvalue Problems, Numerical Linear Algebra, 1997.
http://amzn.to/2BI9kRH

15.8.2 API

� numpy.linalg.eig() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eig.

html

� numpy.diag() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html

http://amzn.to/2k76D4
http://amzn.to/2AZ7R8j
http://amzn.to/2B3MsuU
http://amzn.to/2BGuEqI
http://amzn.to/2BI9kRH
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eig.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eig.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html

15.9. Summary 122

� numpy.dot() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dot.html

� numpy.linalg.inv() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.

html

15.8.3 Articles

� eigen on Wiktionary.
https://en.wiktionary.org/wiki/eigen

� Eigenvalues and eigenvectors.
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

� Eigendecomposition of a matrix.
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

� Eigenvalue algorithm.
https://en.wikipedia.org/wiki/Eigenvalue_algorithm

� Matrix decomposition.
https://en.wikipedia.org/wiki/Matrix_decomposition

15.9 Summary

In this tutorial, you discovered the eigendecomposition, eigenvectors, and eigenvalues in linear
algebra. Specifically, you learned:

� What an eigendecomposition is and the role of eigenvectors and eigenvalues.

� How to calculate an eigendecomposition in Python with NumPy.

� How to confirm a vector is an eigenvector and how to reconstruct a matrix from eigenvectors
and eigenvalues.

15.9.1 Next

In the next chapter you will discover the singular-value decomposition method.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dot.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.html
https://en.wiktionary.org/wiki/eigen
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Eigenvalue_algorithm
https://en.wikipedia.org/wiki/Matrix_decomposition

Chapter 16

Singular Value Decomposition

Matrix decomposition, also known as matrix factorization, involves describing a given matrix
using its constituent elements. Perhaps the most known and widely used matrix decomposition
method is the Singular-Value Decomposition, or SVD. All matrices have an SVD, which makes
it more stable than other methods, such as the eigendecomposition. As such, it is often used
in a wide array of applications including compressing, denoising, and data reduction. In this
tutorial, you will discover the Singular-Value Decomposition method for decomposing a matrix
into its constituent elements. After completing this tutorial, you will know:

� What Singular-value decomposition is and what is involved.

� How to calculate an SVD and reconstruct a rectangular and square matrix from SVD
elements.

� How to calculate the pseudoinverse and perform dimensionality reduction using the SVD.

Let’s get started.

16.1 Tutorial Overview

This tutorial is divided into 5 parts; they are:

1. What is the Singular-Value Decomposition

2. Calculate Singular-Value Decomposition

3. Reconstruct Matrix

4. Pseudoinverse

5. Dimensionality Reduction

123

16.2. What is the Singular-Value Decomposition 124

16.2 What is the Singular-Value Decomposition

The Singular-Value Decomposition, or SVD for short, is a matrix decomposition method for
reducing a matrix to its constituent parts in order to make certain subsequent matrix calculations
simpler. For the case of simplicity we will focus on the SVD for real-valued matrices and ignore
the case for complex numbers.

A = U · Σ · V T (16.1)

Where A is the real n ×m matrix that we wish to decompose, U is an m ×m matrix, Σ
represented by the uppercase Greek letter sigma) is an m× n diagonal matrix, and V T is the V
transpose of an n× n matrix where T is a superscript.

The Singular Value Decomposition is a highlight of linear algebra.

— Page 371, Introduction to Linear Algebra, 2016.

The diagonal values in the Σ matrix are known as the singular values of the original matrix
A. The columns of the U matrix are called the left-singular vectors of A, and the columns
of V are called the right-singular vectors of A. The SVD is calculated via iterative numerical
methods. We will not go into the details of these methods. Every rectangular matrix has a
singular value decomposition, although the resulting matrices may contain complex numbers
and the limitations of floating point arithmetic may cause some matrices to fail to decompose
neatly.

The singular value decomposition (SVD) provides another way to factorize a matrix,
into singular vectors and singular values. The SVD allows us to discover some of
the same kind of information as the eigendecomposition. However, the SVD is more
generally applicable.

— Pages 44-45, Deep Learning, 2016.

The SVD is used widely both in the calculation of other matrix operations, such as matrix
inverse, but also as a data reduction method in machine learning. SVD can also be used in least
squares linear regression, image compression, and denoising data.

The singular value decomposition (SVD) has numerous applications in statistics,
machine learning, and computer science. Applying the SVD to a matrix is like
looking inside it with X-ray vision...

— Page 297, No Bullshit Guide To Linear Algebra, 2017.

16.3 Calculate Singular-Value Decomposition

The SVD can be calculated by calling the svd() function. The function takes a matrix and
returns the U, Σ and V T elements. The Σ diagonal matrix is returned as a vector of singular
values. The V matrix is returned in a transposed form, e.g. V T . The example below defines a
3× 2 matrix and calculates the singular-value decomposition.

16.4. Reconstruct Matrix 125

singular-value decomposition

from numpy import array

from scipy.linalg import svd

define a matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

factorize

U, s, V = svd(A)

print(U)

print(s)

print(V)

Listing 16.1: Example of calculating a singular-value decomposition.

Running the example first prints the defined 3×2 matrix, then the 3×3 U matrix, 2 element
Σ vector, and 2× 2 V T matrix elements calculated from the decomposition.

[[1 2]

[3 4]

[5 6]]

[[-0.2298477 0.88346102 0.40824829]

[-0.52474482 0.24078249 -0.81649658]

[-0.81964194 -0.40189603 0.40824829]]

[9.52551809 0.51430058]

[[-0.61962948 -0.78489445]

[-0.78489445 0.61962948]]

Listing 16.2: Sample output from calculating a singular-value decomposition.

16.4 Reconstruct Matrix

The original matrix can be reconstructed from the U , Σ, and V T elements. The U , s, and V
elements returned from the svd() cannot be multiplied directly. The s vector must be converted
into a diagonal matrix using the diag() function. By default, this function will create a square
matrix that is m ×m, relative to our original matrix. This causes a problem as the size of
the matrices do not fit the rules of matrix multiplication, where the number of columns in a
matrix must match the number of rows in the subsequent matrix. After creating the square Σ
diagonal matrix, the sizes of the matrices are relative to the original n×m matrix that we are
decomposing, as follows:

U(m×m) · Σ(m×m) · V T (n× n) (16.2)

Where, in fact, we require:

U(m×m) · Σ(m× n) · V T (n× n) (16.3)

16.4. Reconstruct Matrix 126

We can achieve this by creating a new Σ matrix of all zero values that is m× n (e.g. more
rows) and populate the first n×n part of the matrix with the square diagonal matrix calculated
via diag().

reconstruct rectangular matrix from svd

from numpy import array

from numpy import diag

from numpy import zeros

from scipy.linalg import svd

define matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

factorize

U, s, V = svd(A)

create m x n Sigma matrix

Sigma = zeros((A.shape[0], A.shape[1]))

populate Sigma with n x n diagonal matrix

Sigma[:A.shape[1], :A.shape[1]] = diag(s)

reconstruct matrix

B = U.dot(Sigma.dot(V))

print(B)

Listing 16.3: Example of reconstructing a rectangular matrix from a SVD.

Running the example first prints the original matrix, then the matrix reconstructed from
the SVD elements.

[[1 2]

[3 4]

[5 6]]

[[1. 2.]

[3. 4.]

[5. 6.]]

Listing 16.4: Sample output from reconstructing a rectangular matrix from a SVD.

The above complication with the Σ diagonal only exists with the case where m and n are
not equal. The diagonal matrix can be used directly when reconstructing a square matrix, as
follows.

reconstruct square matrix from svd

from numpy import array

from numpy import diag

from scipy.linalg import svd

define matrix

A = array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

print(A)

factorize

U, s, V = svd(A)

create n x n Sigma matrix

16.5. Pseudoinverse 127

Sigma = diag(s)

reconstruct matrix

B = U.dot(Sigma.dot(V))

print(B)

Listing 16.5: Example of reconstructing a square matrix from a SVD.

Running the example prints the original 3× 3 matrix and the version reconstructed directly
from the SVD elements.

[[1 2 3]

[4 5 6]

[7 8 9]]

[[1. 2. 3.]

[4. 5. 6.]

[7. 8. 9.]]

Listing 16.6: Sample output from reconstructing a square matrix from a SVD.

16.5 Pseudoinverse

The pseudoinverse is the generalization of the matrix inverse for square matrices to rectangular
matrices where the number of rows and columns are not equal. It is also called the Moore-Penrose
Inverse after two independent discoverers of the method or the Generalized Inverse.

Matrix inversion is not defined for matrices that are not square. [...] When A has
more columns than rows, then solving a linear equation using the pseudoinverse
provides one of the many possible solutions.

— Page 46, Deep Learning, 2016.

The pseudoinverse is denoted as A+, where A is the matrix that is being inverted and + is a
superscript. The pseudoinverse is calculated using the singular value decomposition of A:

A+ = V ·D+ · UT (16.4)

Or, without the dot notation:

A+ = V ·D+ · UT (16.5)

Where A+ is the pseudoinverse, D+ is the pseudoinverse of the diagonal matrix Σ and V T is
the transpose of V T . We can get U and V from the SVD operation.

A = U · Σ · V T (16.6)

The D+ can be calculated by creating a diagonal matrix from Σ, calculating the reciprocal
of each non-zero element in Σ, and taking the transpose if the original matrix was rectangular.

Σ =

s1,1 0 0
0 s2,2 0
0 0 s3,3

 (16.7)

16.5. Pseudoinverse 128

D+ =

1

s1,1
0 0

0 1
s2,2

0

0 0 1
s3,3

 (16.8)

The pseudoinverse provides one way of solving the linear regression equation, specifically
when there are more rows than there are columns, which is often the case. NumPy provides the
function pinv() for calculating the pseudoinverse of a rectangular matrix. The example below
defines a 4× 2 matrix and calculates the pseudoinverse.

pseudoinverse

from numpy import array

from numpy.linalg import pinv

define matrix

A = array([

[0.1, 0.2],

[0.3, 0.4],

[0.5, 0.6],

[0.7, 0.8]])

print(A)

calculate pseudoinverse

B = pinv(A)

print(B)

Listing 16.7: Example of calculating the pseudoinverse.

Running the example first prints the defined matrix, and then the calculated pseudoinverse.

[[0.1 0.2]

[0.3 0.4]

[0.5 0.6]

[0.7 0.8]]

[[-1.00000000e+01 -5.00000000e+00 9.04289323e-15 5.00000000e+00]

[8.50000000e+00 4.50000000e+00 5.00000000e-01 -3.50000000e+00]]

Listing 16.8: Sample output from calculating the pseudoinverse.

We can calculate the pseudoinverse manually via the SVD and compare the results to the
pinv() function. First we must calculate the SVD. Next we must calculate the reciprocal of
each value in the s array. Then the s array can be transformed into a diagonal matrix with an
added row of zeros to make it rectangular. Finally, we can calculate the pseudoinverse from the
elements. The specific implementation is:

A+ = V T ·DT · UT (16.9)

The full example is listed below.

pseudoinverse via svd

from numpy import array

from numpy.linalg import svd

from numpy import zeros

from numpy import diag

define matrix

A = array([

[0.1, 0.2],

16.6. Dimensionality Reduction 129

[0.3, 0.4],

[0.5, 0.6],

[0.7, 0.8]])

print(A)

factorize

U, s, V = svd(A)

reciprocals of s

d = 1.0 / s

create m x n D matrix

D = zeros(A.shape)

populate D with n x n diagonal matrix

D[:A.shape[1], :A.shape[1]] = diag(d)

calculate pseudoinverse

B = V.T.dot(D.T).dot(U.T)

print(B)

Listing 16.9: Example of calculating the pseudoinverse via the SVD.

Running the example first prints the defined rectangular matrix and the pseudoinverse that
matches the above results from the pinv() function.

[[0.1 0.2]

[0.3 0.4]

[0.5 0.6]

[0.7 0.8]]

[[-1.00000000e+01 -5.00000000e+00 9.04831765e-15 5.00000000e+00]

[8.50000000e+00 4.50000000e+00 5.00000000e-01 -3.50000000e+00]]

Listing 16.10: Sample output from calculating the pseudoinverse via the SVD.

16.6 Dimensionality Reduction

A popular application of SVD is for dimensionality reduction. Data with a large number of
features, such as more features (columns) than observations (rows) may be reduced to a smaller
subset of features that are most relevant to the prediction problem. The result is a matrix with
a lower rank that is said to approximate the original matrix. To do this we can perform an SVD
operation on the original data and select the top k largest singular values in Σ. These columns
can be selected from Σ and the rows selected from V T . An approximate B of the original vector
A can then be reconstructed.

B = U · Σk · V T
k (16.10)

In natural language processing, this approach can be used on matrices of word occurrences
or word frequencies in documents and is called Latent Semantic Analysis or Latent Semantic
Indexing. In practice, we can retain and work with a descriptive subset of the data called T .
This is a dense summary of the matrix or a projection.

T = U · Σk (16.11)

16.6. Dimensionality Reduction 130

Further, this transform can be calculated and applied to the original matrix A as well as
other similar matrices.

T = A · V T
k (16.12)

The example below demonstrates data reduction with the SVD. First a 3 × 10 matrix is
defined, with more columns than rows. The SVD is calculated and only the first two features
are selected. The elements are recombined to give an accurate reproduction of the original
matrix. Finally the transform is calculated two different ways.

data reduction with svd

from numpy import array

from numpy import diag

from numpy import zeros

from scipy.linalg import svd

define matrix

A = array([

[1,2,3,4,5,6,7,8,9,10],

[11,12,13,14,15,16,17,18,19,20],

[21,22,23,24,25,26,27,28,29,30]])

print(A)

factorize

U, s, V = svd(A)

create m x n Sigma matrix

Sigma = zeros((A.shape[0], A.shape[1]))

populate Sigma with n x n diagonal matrix

Sigma[:A.shape[0], :A.shape[0]] = diag(s)

select

n_elements = 2

Sigma = Sigma[:, :n_elements]

V = V[:n_elements, :]

reconstruct

B = U.dot(Sigma.dot(V))

print(B)

transform

T = U.dot(Sigma)

print(T)

T = A.dot(V.T)

print(T)

Listing 16.11: Example of calculating data reduction with the SVD.

Running the example first prints the defined matrix then the reconstructed approximation,
followed by two equivalent transforms of the original matrix.

[[1 2 3 4 5 6 7 8 9 10]

[11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30]]

[[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

[11. 12. 13. 14. 15. 16. 17. 18. 19. 20.]

[21. 22. 23. 24. 25. 26. 27. 28. 29. 30.]]

[[-18.52157747 6.47697214]

[-49.81310011 1.91182038]

[-81.10462276 -2.65333138]]

16.7. Extensions 131

[[-18.52157747 6.47697214]

[-49.81310011 1.91182038]

[-81.10462276 -2.65333138]]

Listing 16.12: Sample output from calculating data reduction with the SVD.

The scikit-learn provides a TruncatedSVD class that implements this capability directly. The
TruncatedSVD class can be created in which you must specify the number of desirable features
or components to select, e.g. 2. Once created, you can fit the transform (e.g. calculate V T

k)
by calling the fit() function, then apply it to the original matrix by calling the transform()

function. The result is the transform of A called T above. The example below demonstrates the
TruncatedSVD class.

svd data reduction in scikit-learn

from numpy import array

from sklearn.decomposition import TruncatedSVD

define matrix

A = array([

[1,2,3,4,5,6,7,8,9,10],

[11,12,13,14,15,16,17,18,19,20],

[21,22,23,24,25,26,27,28,29,30]])

print(A)

create transform

svd = TruncatedSVD(n_components=2)

fit transform

svd.fit(A)

apply transform

result = svd.transform(A)

print(result)

Listing 16.13: Example of calculating data reduction with the SVD in scikit-learn.

Running the example first prints the defined matrix, followed by the transformed version
of the matrix. We can see that the values match those calculated manually above, except for
the sign on some values. We can expect there to be some instability when it comes to the
sign given the nature of the calculations involved and the differences in the underlying libraries
and methods used. This instability of sign should not be a problem in practice as long as the
transform is trained for reuse.

[[1 2 3 4 5 6 7 8 9 10]

[11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30]]

[[18.52157747 6.47697214]

[49.81310011 1.91182038]

[81.10462276 -2.65333138]]

Listing 16.14: Sample output from calculating data reduction with the SVD in scikit-learn.

16.7 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

16.8. Further Reading 132

� Experiment with the SVD method on your own data.

� Research and list 10 applications of SVD in machine learning.

� Apply SVD as a data reduction technique on a real-world tabular dataset.

If you explore any of these extensions, I’d love to know.

16.8 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

16.8.1 Books

� Chapter 12, Singular-Value and Jordan Decompositions, Linear Algebra and Matrix
Analysis for Statistics, 2014.
http://amzn.to/2A9ceNv

� Chapter 4, The Singular Value Decomposition and Chapter 5, More on the SVD, Numerical
Linear Algebra, 1997.
http://amzn.to/2kjEF4S

� Section 2.4 The Singular Value Decomposition, Matrix Computations, 2012.
http://amzn.to/2B9xnLD

� Chapter 7 The Singular Value Decomposition (SVD), Introduction to Linear Algebra, Fifth
Edition, 2016.
http://amzn.to/2AZ7R8j

� Section 2.8 Singular Value Decomposition, Deep Learning, 2016.
http://amzn.to/2B3MsuU

� Section 7.D Polar Decomposition and Singular Value Decomposition, Linear Algebra Done
Right, Third Edition, 2015.
http://amzn.to/2BGuEqI

� Lecture 3 The Singular Value Decomposition, Numerical Linear Algebra, 1997.
http://amzn.to/2BI9kRH

� Section 2.6 Singular Value Decomposition, Numerical Recipes: The Art of Scientific
Computing, Third Edition, 2007.
http://amzn.to/2BezVEE

� Section 2.9 The Moore-Penrose Pseudoinverse, Deep Learning, 2016.
http://amzn.to/2B3MsuU

http://amzn.to/2A9ceNv
http://amzn.to/2kjEF4S
http://amzn.to/2B9xnLD
http://amzn.to/2AZ7R8j
http://amzn.to/2B3MsuU
http://amzn.to/2BGuEqI
http://amzn.to/2BI9kRH
http://amzn.to/2BezVEE
http://amzn.to/2B3MsuU

16.9. Summary 133

16.8.2 API

� numpy.linalg.svd() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.

html

� numpy.matrix.H API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matrix.H.

html

� numpy.diag() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html

� numpy.linalg.pinv() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.pinv.

html

� sklearn.decomposition.TruncatedSVD API.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.

html

16.8.3 Articles

� Matrix decomposition on Wikipedia.
https://en.wikipedia.org/wiki/Matrix_decomposition

� Singular-value decomposition on Wikipedia.
https://en.wikipedia.org/wiki/Singular-value_decomposition

� Singular value on Wikipedia.
https://en.wikipedia.org/wiki/Singular_value

� Moore-Penrose inverse on Wikipedia.
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

� Latent semantic analysis on Wikipedia.
https://en.wikipedia.org/wiki/Latent_semantic_analysis

16.9 Summary

In this tutorial, you discovered the Singular-value decomposition method for decomposing a
matrix into its constituent elements. Specifically, you learned:

� What Singular-value decomposition is and what is involved.

� How to calculate an SVD and reconstruct a rectangular and square matrix from SVD
elements.

� How to calculate the pseudoinverse and perform dimensionality reduction using the SVD.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matrix.H.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matrix.H.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.pinv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.pinv.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Singular_value
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Latent_semantic_analysis

16.9. Summary 134

16.9.1 Next

This is the end of the part on matrix factorization. In the next part you will discover the
intersection of statistics and linear algebra, starting with simple statistical calculations on
vectors and matrices.

Part VI

Statistics

135

Chapter 17

Introduction to Multivariate Statistics

Fundamental statistics are useful tools in applied machine learning for a better understanding
your data. They are also the tools that provide the foundation for more advanced linear algebra
operations and machine learning methods, such as the covariance matrix and principal component
analysis respectively. As such, it is important to have a strong grip on fundamental statistics
in the context of linear algebra notation. In this tutorial, you will discover how fundamental
statistical operations work and how to implement them using NumPy with notation and
terminology from linear algebra.

After completing this tutorial, you will know:

� What the expected value, average, and mean are and how to calculate them.

� What the variance and standard deviation are and how to calculate them.

� What the covariance, correlation, and covariance matrix are and how to calculate them.

Let’s get started.

17.1 Tutorial Overview

This tutorial is divided into 4 parts; they are:

1. Expected Value and Mean

2. Variance and Standard Deviation

3. Covariance and Correlation

4. Covariance Matrix

17.2 Expected Value and Mean

In probability, the average value of some random variable X is called the expected value or the
expectation. The expected value uses the notation E with square brackets around the name of
the variable; for example:

E[X] (17.1)

136

17.2. Expected Value and Mean 137

It is calculated as the probability weighted sum of values that can be drawn.

E[X] =
∑

x1 × p1, x2 × p2, x3 × p3, · · · , xn × pn (17.2)

In simple cases, such as the flipping of a coin or rolling a dice, the probability of each event is
just as likely. Therefore, the expected value can be calculated as the sum of all values multiplied
by the reciprocal of the number of values.

E[X] =
1

n
×
∑

x1, x2, x3, · · · , xn (17.3)

In statistics, the mean, or more technically the arithmetic mean or sample mean, can be
estimated from a sample of examples drawn from the domain. It is confusing because mean,
average, and expected value are used interchangeably. In the abstract, the mean is denoted by
the lower case Greek letter mu µ and is calculated from the sample of observations, rather than
all possible values.

µ =
1

n
×
∑

x1, x2, x3, · · · , xn (17.4)

Or, written more compactly:

µ = P (x)×
∑

x (17.5)

Where x is the vector of observations and P (x) is the calculated probability for each value.
When calculated for a specific variable, such as x, the mean is denoted as a lower case variable
name with a line above, called x-bar e.g. x̄.

x̄ =
1

n
×

n∑
i=1

xi (17.6)

The arithmetic mean can be calculated for a vector or matrix in NumPy by using the mean()

function. The example below defines a 6-element vector and calculates the mean.

vector mean

from numpy import array

from numpy import mean

define vector

v = array([1,2,3,4,5,6])

print(v)

calculate mean

result = mean(v)

print(result)

Listing 17.1: Example of calculating a vector mean.

Running the example first prints the defined vector and the mean of the values in the vector.

[1 2 3 4 5 6]

3.5

Listing 17.2: Sample output from calculating a vector mean.

17.3. Variance and Standard Deviation 138

The mean function can calculate the row or column means of a matrix by specifying the
axis argument and the value 0 or 1 respectively. The example below defines a 2× 6 matrix and
calculates both column and row means.

matrix means

from numpy import array

from numpy import mean

define matrix

M = array([

[1,2,3,4,5,6],

[1,2,3,4,5,6]])

print(M)

column means

col_mean = mean(M, axis=0)

print(col_mean)

row means

row_mean = mean(M, axis=1)

print(row_mean)

Listing 17.3: Example of calculating matrix means.

Running the example first prints the defined matrix, then the calculated column and row
mean values.

[[1 2 3 4 5 6]

[1 2 3 4 5 6]]

[1. 2. 3. 4. 5. 6.]

[3.5 3.5]

Listing 17.4: Sample output from calculating matrix means.

17.3 Variance and Standard Deviation

In probability, the variance of some random variable X is a measure of how much values in the
distribution vary on average with respect to the mean. The variance is denoted as the function
V ar() on the variable.

V ar[X] (17.7)

Variance is calculated as the average squared difference of each value in the distribution
from the expected value. Or the expected squared difference from the expected value.

V ar[X] = E[(X − E[X])2] (17.8)

Assuming the expected value of the variable has been calculated (E[X]), the variance of the
random variable can be calculated as the sum of the squared difference of each example from
the expected value multiplied by the probability of that value.

V ar[X] =
∑

p(x1)× (x1 − E[X])2, p(x2)× (x2 − E[X])2, · · · , p(xn)× (xn − E[X])2 (17.9)

17.3. Variance and Standard Deviation 139

If the probability of each example in the distribution is equal, variance calculation can drop
the individual probabilities and multiply the sum of squared differences by the reciprocal of the
number of examples in the distribution.

V ar[X] =
1

n
×
∑

(x1 − E[X])2, (x2 − E[X])2, · · · , (xn − E[X])2 (17.10)

In statistics, the variance can be estimated from a sample of examples drawn from the
domain. In the abstract, the sample variance is denoted by the lower case sigma with a 2
superscript indicating the units are squared (e.g. σ2), not that you must square the final value.
The sum of the squared differences is multiplied by the reciprocal of the number of examples
minus 1 to correct for a bias (bias is related to a deeper discussion on degrees of freedom and I
refer you to references at the end of the lesson).

σ2 =
1

n− 1
×

n∑
i=1

(xi − µ)2 (17.11)

In NumPy, the variance can be calculated for a vector or a matrix using the var() function.
By default, the var() function calculates the population variance. To calculate the sample
variance, you must set the ddof argument to the value 1. The example below defines a 6-element
vector and calculates the sample variance.

vector variance

from numpy import array

from numpy import var

define vector

v = array([1,2,3,4,5,6])

print(v)

calculate variance

result = var(v, ddof=1)

print(result)

Listing 17.5: Example of calculating a vector variance.

Running the example first prints the defined vector and then the calculated sample variance
of the values in the vector.

[1 2 3 4 5 6]

3.5

Listing 17.6: Example of calculating a vector variance.

The var function can calculate the row or column variances of a matrix by specifying the
axis argument and the value 0 or 1 respectively, the same as the mean function above. The
example below defines a 2× 6 matrix and calculates both column and row sample variances.

matrix variances

from numpy import array

from numpy import var

define matrix

M = array([

[1,2,3,4,5,6],

[1,2,3,4,5,6]])

print(M)

17.3. Variance and Standard Deviation 140

column variances

col_var = var(M, ddof=1, axis=0)

print(col_var)

row variances

row_var = var(M, ddof=1, axis=1)

print(row_var)

Listing 17.7: Example of calculating matrix variances.

Running the example first prints the defined matrix and then the column and row sample
variance values.

[[1 2 3 4 5 6]

[1 2 3 4 5 6]]

[0. 0. 0. 0. 0. 0.]

[3.5 3.5]

Listing 17.8: Sample output from calculating matrix variances.

The standard deviation is calculated as the square root of the variance and is denoted as
lowercase s.

s =
√
σ2 (17.12)

To keep with this notation, sometimes the variance is indicated as s2, with 2 as a superscript,
again showing that the units are squared. NumPy also provides a function for calculating
the standard deviation directly via the std() function. As with the var() function, the ddof

argument must be set to 1 to calculate the unbiased sample standard deviation and column and
row standard deviations can be calculated by setting the axis argument to 0 and 1 respectively.
The example below demonstrates how to calculate the sample standard deviation for the rows
and columns of a matrix.

matrix standard deviation

from numpy import array

from numpy import std

define matrix

M = array([

[1,2,3,4,5,6],

[1,2,3,4,5,6]])

print(M)

column standard deviations

col_std = std(M, ddof=1, axis=0)

print(col_std)

row standard deviations

row_std = std(M, ddof=1, axis=1)

print(row_std)

Listing 17.9: Example of calculating matrix standard deviations.

Running the example first prints the defined matrix and then the column and row sample
standard deviation values.

[[1 2 3 4 5 6]

[1 2 3 4 5 6]]

17.4. Covariance and Correlation 141

[0. 0. 0. 0. 0. 0.]

[1.87082869 1.87082869]

Listing 17.10: Sample output from calculating matrix standard deviations.

17.4 Covariance and Correlation

In probability, covariance is the measure of the joint probability for two random variables. It
describes how the two variables change together. It is denoted as the function cov(X, Y), where
X and Y are the two random variables being considered.

cov(X, Y) (17.13)

Covariance is calculated as expected value or average of the product of the differences of
each random variable from their expected values, where E[X] is the expected value for X and
E[Y] is the expected value of y.

cov(X, Y) = E[(X − E[X]× (Y − E[Y])] (17.14)

Assuming the expected values for X and Y have been calculated, the covariance can be
calculated as the sum of the difference of x values from their expected value multiplied by the
difference of the y values from their expected values multiplied by the reciprocal of the number
of examples in the population.

cov(X, Y) =
1

n
×
∑

(x− E[X])× (y − E[Y]) (17.15)

In statistics, the sample covariance can be calculated in the same way, although with a bias
correction, the same as with the variance.

cov(X, Y) =
1

n− 1
×
∑

(x− E[X])× (y − E[Y]) (17.16)

The sign of the covariance can be interpreted as whether the two variables increase together
(positive) or decrease together (negative). The magnitude of the covariance is not easily
interpreted. A covariance value of zero indicates that both variables are completely independent.
NumPy does not have a function to calculate the covariance between two variables directly.
Instead, it has a function for calculating a covariance matrix called cov() that we can use to
retrieve the covariance. By default, the cov()function will calculate the unbiased or sample
covariance between the provided random variables.

The example below defines two vectors of equal length with one increasing and one decreasing.
We would expect the covariance between these variables to be negative. We access just the
covariance for the two variables as the [0, 1] element of the square covariance matrix returned.

vector covariance

from numpy import array

from numpy import cov

define first vector

x = array([1,2,3,4,5,6,7,8,9])

17.4. Covariance and Correlation 142

print(x)

define second covariance

y = array([9,8,7,6,5,4,3,2,1])

print(y)

calculate covariance

Sigma = cov(x,y)[0,1]

print(Sigma)

Listing 17.11: Example of calculating a vector covariance.

Running the example first prints the two vectors followed by the covariance for the values in
the two vectors. The value is negative, as we expected.

[1 2 3 4 5 6 7 8 9]

[9 8 7 6 5 4 3 2 1]

-7.5

Listing 17.12: Sample output from calculating vector covariance.

The covariance can be normalized to a score between -1 and 1 to make the magnitude
interpretable by dividing it by the standard deviation of X and Y . The result is called the
correlation of the variables, also called the Pearson correlation coefficient, named for the
developer of the method.

r =
cov(X, Y)

sX × sY
(17.17)

Where r is the correlation coefficient of X and Y , cov(X, Y) is the sample covariance of X
and Y and sX and sY are the standard deviations of X and Y respectively. NumPy provides
the corrcoef() function for calculating the correlation between two variables directly. Like
cov(), it returns a matrix, in this case a correlation matrix. As with the results from cov() we
can access just the correlation of interest from the [0,1] value from the returned squared matrix.

vector correlation

from numpy import array

from numpy import corrcoef

define first vector

x = array([1,2,3,4,5,6,7,8,9])

print(x)

define second vector

y = array([9,8,7,6,5,4,3,2,1])

print(y)

calculate correlation

corr = corrcoef(x,y)[0,1]

print(corr)

Listing 17.13: Example of calculating a vector correlation.

Running the example first prints the two defined vectors followed by the correlation coefficient.
We can see that the vectors are maximally negatively correlated as we designed.

[1 2 3 4 5 6 7 8 9]

[9 8 7 6 5 4 3 2 1]

-1.0

17.5. Covariance Matrix 143

Listing 17.14: Sample output from calculating vector correlation.

17.5 Covariance Matrix

The covariance matrix is a square and symmetric matrix that describes the covariance between
two or more random variables. The diagonal of the covariance matrix are the variances of each
of the random variables, as such it is often called the variance-covariance matrix. A covariance
matrix is a generalization of the covariance of two variables and captures the way in which all
variables in the dataset may change together. The covariance matrix is denoted as the uppercase
Greek letter Sigma, e.g. Σ. The covariance for each pair of random variables is calculated as
above.

Σ = E[(X − E[X]× (Y − E[Y])] (17.18)

Where:

Σi,j = cov(Xi, Xj) (17.19)

And X is a matrix where each column represents a random variable. The covariance matrix
provides a useful tool for separating the structured relationships in a matrix of random variables.
This can be used to decorrelate variables or applied as a transform to other variables. It is a key
element used in the Principal Component Analysis data reduction method, or PCA for short.

The covariance matrix can be calculated in NumPy using the cov() function. By default,
this function will calculate the sample covariance matrix. The cov() function can be called with
a single 2D array where each sub-array contains a feature (e.g. column). If this function is called
with your data defined in a normal matrix format (rows then columns), then a transpose of the
matrix will need to be provided to the function in order to correctly calculate the covariance of
the columns. Below is an example that defines a dataset with 5 observations across 3 features
and calculates the covariance matrix.

covariance matrix

from numpy import array

from numpy import cov

define matrix of observations

X = array([

[1, 5, 8],

[3, 5, 11],

[2, 4, 9],

[3, 6, 10],

[1, 5, 10]])

print(X)

calculate covariance matrix

Sigma = cov(X.T)

print(Sigma)

Listing 17.15: Example of calculating a covariance matrix.

Running the example first prints the defined dataset and then the calculated covariance
matrix.

17.6. Extensions 144

[[1 5 8]

[3 5 11]

[2 4 9]

[3 6 10]

[1 5 10]]

[[1. 0.25 0.75]

[0.25 0.5 0.25]

[0.75 0.25 1.3]]

Listing 17.16: Sample output from calculating a covariance matrix.

The covariance matrix is used widely in linear algebra and the intersection of linear algebra
and statistics called multivariate analysis. We have only had a small taste in this chapter.

17.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Explore each example using your own small contrived array data.

� Load data from a CSV file and apply each operation to the data columns.

� Write your own functions to implement each statistical operation.

If you explore any of these extensions, I’d love to know.

17.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

17.7.1 Books

� Applied Multivariate Statistical Analysis, 2012.
http://amzn.to/2AUcEc5

� Applied Multivariate Statistical Analysis, 2015.
http://amzn.to/2AWIViz

� Chapter 12 Linear Algebra in Probability & Statistics, Introduction to Linear Algebra,
Fifth Edition, 2016.
http://amzn.to/2AZ7R8j

� Chapter 3, Probability and Information Theory, Deep Learning, 2016.
http://amzn.to/2j4oKuP

http://amzn.to/2AUcEc5
http://amzn.to/2AWIViz
http://amzn.to/2AZ7R8j
http://amzn.to/2j4oKuP

17.7. Further Reading 145

17.7.2 API

� NumPy Statistics Functions.
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.statistics.html

� numpy.mean() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html

� numpy.var() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.var.html

� numpy.std() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.std.html

� numpy.cov() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.cov.html

� numpy.corrcoef() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.corrcoef.

html

17.7.3 Articles

� Expected value on Wikipedia.
https://en.wikipedia.org/wiki/Expected_value

� Mean on Wikipedia.
https://en.wikipedia.org/wiki/Mean

� Variance on Wikipedia.
https://en.wikipedia.org/wiki/Variance

� Standard deviation on Wikipedia.
https://en.wikipedia.org/wiki/Standard_deviation

� Covariance on Wikipedia.
https://en.wikipedia.org/wiki/Covariance

� Sample mean and covariance.
https://en.wikipedia.org/wiki/Sample_mean_and_covariance

� Pearson correlation coefficient.
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

� Covariance matrix on Wikipedia.
https://en.wikipedia.org/wiki/Covariance_matrix

� Estimation of covariance matrices on Wikipedia.
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.statistics.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.var.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.std.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.cov.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.corrcoef.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.corrcoef.html
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Sample_mean_and_covariance
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

17.8. Summary 146

17.8 Summary

In this tutorial, you discovered how fundamental statistical operations work and how to implement
them using NumPy with notation and terminology from linear algebra. Specifically, you learned:

� What the expected value, average, and mean are and how to calculate them in NumPy.

� What the variance and standard deviation are and how to calculate them in NumPy.

� What the covariance, correlation, and covariance matrix are and how to calculate them in
NumPy.

17.8.1 Next

In the next chapter you will discover the principal component analysis method that makes use
of the covariance matrix.

Chapter 18

Principal Component Analysis

An important machine learning method for dimensionality reduction is called Principal Com-
ponent Analysis. It is a method that uses simple matrix operations from linear algebra and
statistics to calculate a projection of the original data into the same number or fewer dimensions.
In this tutorial, you will discover the Principal Component Analysis machine learning method
for dimensionality reduction and how to implement it from scratch in Python. After completing
this tutorial, you will know:

� The procedure for calculating the Principal Component Analysis and how to choose
principal components.

� How to calculate the Principal Component Analysis from scratch in NumPy.

� How to calculate the Principal Component Analysis for reuse on more data in scikit-learn.

Let’s get started.

18.1 Tutorial Overview

This tutorial is divided into 3 parts; they are:

1. What is Principal Component Analysis

2. Calculate Principal Component Analysis

3. Principal Component Analysis in scikit-learn

18.2 What is Principal Component Analysis

Principal Component Analysis, or PCA for short, is a method for reducing the dimensionality
of data. It can be thought of as a projection method where data with m-columns (features) is
projected into a subspace with m or fewer columns, whilst retaining the essence of the original
data. The PCA method can be described and implemented using the tools of linear algebra.

147

18.2. What is Principal Component Analysis 148

PCA is an operation applied to a dataset, represented by an n×m matrix A that results in a
projection of A which we will call B. Let’s walk through the steps of this operation.

A =

a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

 (18.1)

B = PCA(A) (18.2)

The first step is to calculate the mean values of each column.

M = mean(A) (18.3)

Next, we need to center the values in each column by subtracting the mean column value.

C = A−M (18.4)

The next step is to calculate the covariance matrix of the centered matrix C. Correlation
is a normalized measure of the amount and direction (positive or negative) that two columns
change together. Covariance is a generalized and unnormalized version of correlation across
multiple columns. A covariance matrix is a calculation of covariance of a given matrix with
covariance scores for every column with every other column, including itself.

V = cov(C) (18.5)

Finally, we calculate the eigendecomposition of the covariance matrix V . This results in a
list of eigenvalues and a list of eigenvectors.

values, vectors = eig(V) (18.6)

The eigenvectors represent the directions or components for the reduced subspace of B,
whereas the eigenvalues represent the magnitudes for the directions. The eigenvectors can be
sorted by the eigenvalues in descending order to provide a ranking of the components or axes of
the new subspace for A. If all eigenvalues have a similar value, then we know that the existing
representation may already be reasonably compressed or dense and that the projection may
offer little. If there are eigenvalues close to zero, they represent components or axes of B that
may be discarded. A total of m or less components must be selected to comprise the chosen
subspace. Ideally, we would select k eigenvectors, called principal components, that have the k
largest eigenvalues.

B = select(values, vectors) (18.7)

Other matrix decomposition methods can be used such as Singular-Value Decomposition,
or SVD. As such, generally the values are referred to as singular values and the vectors of the
subspace are referred to as principal components. Once chosen, data can be projected into the
subspace via matrix multiplication.

P = BT · A (18.8)

Where A is the original data that we wish to project, BT is the transpose of the chosen
principal components and P is the projection of A. This is called the covariance method for
calculating the PCA, although there are alternative ways to calculate it.

18.3. Calculate Principal Component Analysis 149

18.3 Calculate Principal Component Analysis

There is no pca() function in NumPy, but we can easily calculate the Principal Component
Analysis step-by-step using NumPy functions. The example below defines a small 3× 2 matrix,
centers the data in the matrix, calculates the covariance matrix of the centered data, and then
the eigendecomposition of the covariance matrix. The eigenvectors and eigenvalues are taken as
the principal components and singular values and used to project the original data.

principal component analysis

from numpy import array

from numpy import mean

from numpy import cov

from numpy.linalg import eig

define matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

column means

M = mean(A.T, axis=1)

center columns by subtracting column means

C = A - M

calculate covariance matrix of centered matrix

V = cov(C.T)

factorize covariance matrix

values, vectors = eig(V)

print(vectors)

print(values)

project data

P = vectors.T.dot(C.T)

print(P.T)

Listing 18.1: Example of calculating a PCA manually.

Running the example first prints the original matrix, then the eigenvectors and eigenvalues
of the centered covariance matrix, followed finally by the projection of the original matrix.
Interestingly, we can see that only the first eigenvector is required, suggesting that we could
project our 3× 2 matrix onto a 3× 1 matrix with little loss.

[[1 2]

[3 4]

[5 6]]

[[0.70710678 -0.70710678]

[0.70710678 0.70710678]]

[8. 0.]

[[-2.82842712 0.]

[0. 0.]

[2.82842712 0.]]

Listing 18.2: Sample output from calculating a PCA manually.

18.4. Principal Component Analysis in scikit-learn 150

18.4 Principal Component Analysis in scikit-learn

We can calculate a Principal Component Analysis on a dataset using the PCA() class in the
scikit-learn library. The benefit of this approach is that once the projection is calculated, it can
be applied to new data again and again quite easily. When creating the class, the number of
components can be specified as a parameter. The class is first fit on a dataset by calling the fit()
function, and then the original dataset or other data can be projected into a subspace with the
chosen number of dimensions by calling the transform() function. Once fit, the singular values
and principal components can be accessed on the PCA class via the explained variance and
components attributes. The example below demonstrates using this class by first creating an
instance, fitting it on a 3× 2 matrix, accessing the values and vectors of the projection, and
transforming the original data.

principal component analysis with scikit-learn

from numpy import array

from sklearn.decomposition import PCA

define matrix

A = array([

[1, 2],

[3, 4],

[5, 6]])

print(A)

create the transform

pca = PCA(2)

fit transform

pca.fit(A)

access values and vectors

print(pca.components_)

print(pca.explained_variance_)

transform data

B = pca.transform(A)

print(B)

Listing 18.3: Example of calculating a PCA with scikit-learn.

Running the example first prints the 3× 2 data matrix, then the principal components and
values, followed by the projection of the original matrix. We can see, that with some very minor
floating point rounding that we achieve the same principal components, singular values, and
projection as in the previous example.

[[1 2]

[3 4]

[5 6]]

[[0.70710678 0.70710678]

[0.70710678 -0.70710678]]

[8.00000000e+00 2.25080839e-33]

[[-2.82842712e+00 2.22044605e-16]

[0.00000000e+00 0.00000000e+00]

[2.82842712e+00 -2.22044605e-16]]

Listing 18.4: Sample output from calculating a PCA with scikit-learn.

18.5. Extensions 151

18.5 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Re-run the examples with your own small contrived array data.

� Load a dataset and calculate the PCA on it and compare the results from the two methods.

� Search for and locate 10 examples where PCA has been used in machine learning papers.

If you explore any of these extensions, I’d love to know.

18.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

18.6.1 Books

� Section 7.3 Principal Component Analysis (PCA by the SVD), Introduction to Linear
Algebra, Fifth Edition, 2016.
http://amzn.to/2CZgTTB

� Section 2.12 Example: Principal Components Analysis, Deep Learning, 2016.
http://amzn.to/2B3MsuU

18.7 API

� numpy.mean() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html

� numpy.cov() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.cov.html

� numpy.linalg.eig() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eig.

html

� sklearn.decomposition.PCA API.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.

html

18.8 Articles

� Principal component analysis on Wikipedia.
https://en.wikipedia.org/wiki/Principal_component_analysis

� Covariance matrix.
https://en.wikipedia.org/wiki/Covariance_matrix

http://amzn.to/2CZgTTB
http://amzn.to/2B3MsuU
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.cov.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eig.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eig.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Covariance_matrix

18.9. Summary 152

18.9 Summary

In this tutorial, you discovered the Principal Component Analysis machine learning method for
dimensionality reduction. Specifically, you learned:

� The procedure for calculating the Principal Component Analysis and how to choose
principal components.

� How to calculate the Principal Component Analysis from scratch in NumPy.

� How to calculate the Principal Component Analysis for reuse on more data in scikit-learn.

18.9.1 Next

In the next chapter you will discover the linear algebra reformulation of linear regression.

Chapter 19

Linear Regression

Linear regression is a method for modeling the relationship between one or more independent
variables and a dependent variable. It is a staple of statistics and is often considered a good
introductory machine learning method. It is also a method that can be reformulated using
matrix notation and solved using matrix operations. In this tutorial, you will discover the
matrix formulation of linear regression and how to solve it using direct and matrix factorization
methods. After completing this tutorial, you will know:

� Linear regression and the matrix reformulation with the normal equations.

� How to solve linear regression using a QR matrix decomposition.

� How to solve linear regression using SVD and the pseudoinverse.

Let’s get started.

19.1 Tutorial Overview

This tutorial is divided into 7 parts; they are:

1. What is Linear Regression

2. Matrix Formulation of Linear Regression

3. Linear Regression Dataset

4. Solve via Inverse

5. Solve via QR Decomposition

6. Solve via SVD and Pseudoinverse

7. Solve via Convenience Function

153

19.2. What is Linear Regression 154

19.2 What is Linear Regression

Linear regression is a method for modeling the relationship between two scalar values: the
input variable x and the output variable y. The model assumes that y is a linear function or a
weighted sum of the input variable.

y = f(x) (19.1)

Or, stated with the coefficients.

y = b0 + b1 × x1 (19.2)

The model can also be used to model an output variable given multiple input variables called
multivariate linear regression (below, brackets were added for readability).

y = b0 + (b1 × x1) + (b2 × x2) + · · · (19.3)

The objective of creating a linear regression model is to find the values for the coefficient
values (b) that minimize the error in the prediction of the output variable y.

19.3 Matrix Formulation of Linear Regression

Linear regression can be stated using Matrix notation; for example:

y = X · b (19.4)

Or, without the dot notation.

y = Xb (19.5)

Where X is the input data and each column is a data feature, b is a vector of coefficients
and y is a vector of output variables for each row in X.

X =

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
x4,1 x4,2 x4,3

 (19.6)

b =

b1b2
b3

 (19.7)

y =

y1
y2
y3
y4

 (19.8)

Reformulated, the problem becomes a system of linear equations where the b vector values
are unknown. This type of system is referred to as overdetermined because there are more
equations than there are unknowns, i.e. each coefficient is used on each row of data. It is a

19.4. Linear Regression Dataset 155

challenging problem to solve analytically because there are multiple inconsistent solutions, e.g.
multiple possible values for the coefficients. Further, all solutions will have some error because
there is no line that will pass nearly through all points, therefore the approach to solving the
equations must be able to handle that. The way this is typically achieved is by finding a solution
where the values for b in the model minimize the squared error. This is called linear least
squares.

||X · b− y||2 =
m∑
i=1

n∑
j=1

Xi,j · (bj − yi)2 (19.9)

This formulation has a unique solution as long as the input columns are independent (e.g.
uncorrelated).

We cannot always get the error e = b− Ax down to zero. When e is zero, x is an
exact solution to Ax = b. When the length of e is as small as possible, x̂ is a least
squares solution.

— Page 219, Introduction to Linear Algebra, Fifth Edition, 2016.

In matrix notation, this problem is formulated using the so-named normal equation:

XT ·X · b = XT · y (19.10)

This can be re-arranged in order to specify the solution for b as:

b = (XT ·X)−1 ·XT · y (19.11)

This can be solved directly, although given the presence of the matrix inverse can be
numerically challenging or unstable.

19.4 Linear Regression Dataset

In order to explore the matrix formulation of linear regression, let’s first define a dataset as a
context. We will use a simple 2D dataset where the data is easy to visualize as a scatter plot
and models are easy to visualize as a line that attempts to fit the data points. The example
below defines a 5× 2 matrix dataset, splits it into X and y components, and plots the dataset
as a scatter plot.

linear regression dataset

from numpy import array

from matplotlib import pyplot

define dataset

data = array([

[0.05, 0.12],

[0.18, 0.22],

[0.31, 0.35],

[0.42, 0.38],

[0.5, 0.49]])

print(data)

split into inputs and outputs

19.4. Linear Regression Dataset 156

X, y = data[:,0], data[:,1]

X = X.reshape((len(X), 1))

scatter plot

pyplot.scatter(X, y)

pyplot.show()

Listing 19.1: Example of example linear regression dataset.

Running the example first prints the defined dataset.

[[0.05 0.12]

[0.18 0.22]

[0.31 0.35]

[0.42 0.38]

[0.5 0.49]]

Listing 19.2: Sample output from example linear regression dataset.

A scatter plot of the dataset is then created showing that a straight line cannot fit this data
exactly.

Figure 19.1: Scatter Plot of Linear Regression Dataset.

19.5. Solve via Inverse 157

19.5 Solve via Inverse

The first approach is to attempt to solve the regression problem directly using the matrix inverse.
That is, given X, what are the set of coefficients b that when multiplied by X will give y. As
we saw in a previous section, the normal equations define how to calculate b directly.

b = (XT ·X)−1 ·XT · y (19.12)

This can be calculated directly in NumPy using the inv() function for calculating the matrix
inverse.

b = inv(X.T.dot(X)).dot(X.T).dot(y)

Listing 19.3: Example code for solving linear least squares directly.

Once the coefficients are calculated, we can use them to predict outcomes given X.

yhat = X.dot(b)

Listing 19.4: Example code for using the coefficients to make a prediction.

Putting this together with the dataset defined in the previous section, the complete example
is listed below.

direct solution to linear least squares

from numpy import array

from numpy.linalg import inv

from matplotlib import pyplot

define dataset

data = array([

[0.05, 0.12],

[0.18, 0.22],

[0.31, 0.35],

[0.42, 0.38],

[0.5, 0.49]])

split into inputs and outputs

X, y = data[:,0], data[:,1]

X = X.reshape((len(X), 1))

linear least squares

b = inv(X.T.dot(X)).dot(X.T).dot(y)

print(b)

predict using coefficients

yhat = X.dot(b)

plot data and predictions

pyplot.scatter(X, y)

pyplot.plot(X, yhat, color='red')

pyplot.show()

Listing 19.5: Example of calculating a linear regression solution directly.

Running the example performs the calculation and prints the coefficient vector b.

[1.00233226]

Listing 19.6: Sample output from calculating a linear regression solution directly.

A scatter plot of the dataset is then created with a line plot for the model, showing a
reasonable fit to the data.

19.6. Solve via QR Decomposition 158

Figure 19.2: Scatter Plot of Direct Solution to the Linear Regression Problem.

A problem with this approach is the matrix inverse that is both computationally expensive
and numerically unstable. An alternative approach is to use a matrix decomposition to avoid
this operation. We will look at two examples in the following sections.

19.6 Solve via QR Decomposition

The QR decomposition is an approach of breaking a matrix down into its constituent elements.

A = Q ·R (19.13)

Where A is the matrix that we wish to decompose, Q a matrix with the size m×m, and R
is an upper triangle matrix with the size m× n. The QR decomposition is a popular approach
for solving the linear least squares equation. Stepping over all of the derivation, the coefficients
can be found using the Q and R elements as follows:

b = R−1 ·QT · y (19.14)

The approach still involves a matrix inversion, but in this case only on the simpler R matrix.
The QR decomposition can be found using the qr() function in NumPy. The calculation of the
coefficients in NumPy looks as follows:

19.6. Solve via QR Decomposition 159

QR decomposition

Q, R = qr(X)

b = inv(R).dot(Q.T).dot(y)

Listing 19.7: Example of calculating a QR decomposition.

Tying this together with the dataset, the complete example is listed below.

QR decomposition solution to linear least squares

from numpy import array

from numpy.linalg import inv

from numpy.linalg import qr

from matplotlib import pyplot

define dataset

data = array([

[0.05, 0.12],

[0.18, 0.22],

[0.31, 0.35],

[0.42, 0.38],

[0.5, 0.49]])

split into inputs and outputs

X, y = data[:,0], data[:,1]

X = X.reshape((len(X), 1))

factorize

Q, R = qr(X)

b = inv(R).dot(Q.T).dot(y)

print(b)

predict using coefficients

yhat = X.dot(b)

plot data and predictions

pyplot.scatter(X, y)

pyplot.plot(X, yhat, color='red')

pyplot.show()

Listing 19.8: Example of calculating a linear regression solution using a QR decomposition.

Running the example first prints the coefficient solution and plots the data with the model.

[1.00233226]

Listing 19.9: Sample output from calculating a linear regression using a QR decomposition.

The QR decomposition approach is more computationally efficient and more numerically
stable than calculating the normal equation directly, but does not work for all data matrices.

19.7. Solve via SVD and Pseudoinverse 160

Figure 19.3: Scatter Plot of QR Decomposition Solution to the Linear Regression Problem.

19.7 Solve via SVD and Pseudoinverse

The Singular-Value Decomposition, or SVD for short, is a matrix decomposition method like
the QR decomposition.

X = U · Σ · V T (19.15)

Where A is the real n×m matrix that we wish to decompose, U is a m×m matrix, Σ (often
represented by the uppercase Greek letter Sigma) is an m× n diagonal matrix, and V T is the
transpose of an n× n matrix. Unlike the QR decomposition, all matrices have a singular-value
decomposition. As a basis for solving the system of linear equations for linear regression, SVD
is more stable and the preferred approach. Once decomposed, the coefficients can be found by
calculating the pseudoinverse of the input matrix X and multiplying that by the output vector
y.

b = X+ · y (19.16)

Where the pseudoinverse X+ is calculated as following:

X+ = U ·D+ · V T (19.17)

19.7. Solve via SVD and Pseudoinverse 161

Where X+ is the pseudoinverse of X and the + is a superscript, D+ is the pseudoinverse of
the diagonal matrix Σ and V T is the transpose of V . NumPy provides the function pinv() to
calculate the pseudoinverse directly. The complete example is listed below.

SVD solution via pseudoinverse to linear least squares

from numpy import array

from numpy.linalg import pinv

from matplotlib import pyplot

define dataset

data = array([

[0.05, 0.12],

[0.18, 0.22],

[0.31, 0.35],

[0.42, 0.38],

[0.5, 0.49]])

split into inputs and outputs

X, y = data[:,0], data[:,1]

X = X.reshape((len(X), 1))

calculate coefficients

b = pinv(X).dot(y)

print(b)

predict using coefficients

yhat = X.dot(b)

plot data and predictions

pyplot.scatter(X, y)

pyplot.plot(X, yhat, color='red')

pyplot.show()

Listing 19.10: Example of calculating a linear regression solution using an SVD.

Running the example prints the coefficient and plots the data with a red line showing the
predictions from the model.

[1.00233226]

Listing 19.11: Sample output from calculating a linear regression using an SVD.

19.8. Solve via Convenience Function 162

Figure 19.4: Scatter Plot of SVD Solution to the Linear Regression Problem.

19.8 Solve via Convenience Function

The pseudoinverse via SVD approach to solving linear least squares is the de facto standard.
This is because it is stable and works with most datasets. NumPy provides a convenience
function named lstsq() that solves the linear least squares function using the SVD approach.
The function takes as input the X matrix and y vector and returns the b coefficients as well as
residual errors, the rank of the provided X matrix and the singular values. The example below
demonstrate the lstsq() function on the test dataset.

least squares via convenience function

from numpy import array

from numpy.linalg import lstsq

from matplotlib import pyplot

define dataset

data = array([

[0.05, 0.12],

[0.18, 0.22],

[0.31, 0.35],

[0.42, 0.38],

[0.5, 0.49]])

split into inputs and outputs

X, y = data[:,0], data[:,1]

19.9. Extensions 163

X = X.reshape((len(X), 1))

calculate coefficients

b, residuals, rank, s = lstsq(X, y)

print(b)

predict using coefficients

yhat = X.dot(b)

plot data and predictions

pyplot.scatter(X, y)

pyplot.plot(X, yhat, color='red')

pyplot.show()

Listing 19.12: Example of calculating a linear regression solution using lstsq().

Running the example prints the coefficient and plots the data with a red line showing the
predictions from the model.

[1.00233226]

Listing 19.13: Sample output from calculating a linear regression solution using lstsq().

Figure 19.5: Scatter Plot of the lstsq() Solution to the Linear Regression Problem.

19.9 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

19.10. Further Reading 164

� Test each linear regression on your own small contrived dataset.

� Load a tabular dataset and test each linear regression method and compare the results.

� Research and implement alternate ways of solving linear least squares using linear algebra.

If you explore any of these extensions, I’d love to know.

19.10 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

19.10.1 Books

� Section 7.7 Least squares approximate solutions. No Bullshit Guide To Linear Algebra,
2017.
http://amzn.to/2k76D4

� Section 4.3 Least Squares Approximations, Introduction to Linear Algebra, Fifth Edition,
2016.
http://amzn.to/2AZ7R8j

� Lecture 11, Least Squares Problems, Numerical Linear Algebra, 1997.
http://amzn.to/2kjEF4S

� Chapter 5, Orthogonalization and Least Squares, Matrix Computations, 2012.
http://amzn.to/2B9xnLD

� Chapter 12, Singular-Value and Jordan Decompositions, Linear Algebra and Matrix
Analysis for Statistics, 2014.
http://amzn.to/2A9ceNv

� Section 2.9 The Moore-Penrose Pseudoinverse, Deep Learning, 2016.
http://amzn.to/2B3MsuU

� Section 15.4 General Linear Least Squares, Numerical Recipes: The Art of Scientific
Computing, Third Edition, 2007.
http://amzn.to/2BezVEE

19.10.2 API

� numpy.linalg.inv() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.

html

� numpy.linalg.qr() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.qr.

html

http://amzn.to/2k76D4
http://amzn.to/2AZ7R8j
http://amzn.to/2kjEF4S
http://amzn.to/2B9xnLD
http://amzn.to/2A9ceNv
http://amzn.to/2B3MsuU
http://amzn.to/2BezVEE
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.inv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.qr.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.qr.html

19.11. Summary 165

� numpy.linalg.svd() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.

html

� numpy.diag() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html

� numpy.linalg.pinv() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.pinv.

html

� numpy.linalg.lstsq() API.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.

html

19.10.3 Articles

� Linear regression on Wikipedia.
https://en.wikipedia.org/wiki/Linear_regression

� Least squares on Wikipedia.
https://en.wikipedia.org/wiki/Least_squares

� Linear least squares (mathematics) on Wikipedia.
https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)

� Overdetermined system on Wikipedia.
https://en.wikipedia.org/wiki/Overdetermined_system

� QR decomposition on Wikipedia.
https://en.wikipedia.org/wiki/QR_decomposition

� Singular-value decomposition on Wikipedia.
https://en.wikipedia.org/wiki/Singular-value_decomposition

� Moore-Penrose inverse.
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

19.11 Summary

In this tutorial, you discovered the matrix formulation of linear regression and how to solve it
using direct and matrix factorization methods. Specifically, you learned:

� Linear regression and the matrix reformulation with the normal equations.

� How to solve linear regression using a QR matrix decomposition.

� How to solve linear regression using SVD and the pseudoinverse.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.diag.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.pinv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.pinv.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
https://en.wikipedia.org/wiki/Overdetermined_system
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

19.11. Summary 166

19.11.1 Next

This was the end of the part on statistics and the final chapter. Next you can get additional
help in the appendix.

Part VII

Appendix

167

Appendix A

Getting Help

This is just the beginning of your journey with linear algebra. As you start to work on projects
and expand your existing knowledge of the techniques, you may need help. This appendix points
out some of the best sources of help.

A.1 Linear Algebra on Wikipedia

Wikipedia is a great place to start. All of the important topics are covered, the descriptions are
concise, and the equations are consistent and readable. What is missing is the more human
level descriptions such as analogies and intuitions. Nevertheless, when you have questions about
linear algebra, I recommend stopping by Wikipedia first. Some good high-level pages to start
on include:

� Linear Algebra.
https://en.wikipedia.org/wiki/Linear_algebra

� Matrix (mathematics).
https://en.wikipedia.org/wiki/Matrix_(mathematics)

� Matrix decomposition.
https://en.wikipedia.org/wiki/Matrix_decomposition

� List of linear algebra topics.
https://en.wikipedia.org/wiki/List_of_linear_algebra_topics

A.2 Linear Algebra Textbooks

I strongly recommend getting a good textbook on the topic of linear algebra and using it as a
reference. The benefit of a good textbook is that the explanations of the various operations
you require will be consistent (or should be). The downside of textbooks is that they can be
very expensive. A good textbook is often easy to spot because it will be the basis for a range of
undergraduate or postgraduate courses at top universities. Some introductory textbooks on
linear algebra I recommend include:

168

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/List_of_linear_algebra_topics

A.3. Linear Algebra University Courses 169

� Introduction to Linear Algebra, Fifth Edition, Gilbert Strang, 2016.
http://amzn.to/2j2J0g4

� Linear Algebra Done Right, Third Edition, 2015.
http://amzn.to/2BGuEqI

� No Bullshit Guide To Linear Algebra, Ivan Savov, 2017.
http://amzn.to/2k76D4C

Some more advanced textbooks I recommend include:

� Matrix Computations, Gene Golub and Charles Van Loan, 2012.
http://amzn.to/2B9xnLD

� Numerical Linear Algebra, Lloyd Trefethen and David Bau 1997.
http://amzn.to/2kjEF4S

I’d also recommend a good textbook on multivariate statistics, which is the intersection of
linear algebra, and numerical statistical methods. Some good introductory textbooks include:

� Applied Multivariate Statistical Analysis, Richard Johnson and Dean Wichern, 2012.
http://amzn.to/2AUcEc5

� Applied Multivariate Statistical Analysis, Wolfgang Karl Hardle and Leopold Simar, 2015.
http://amzn.to/2AWIViz

There are also many good free online books written by academics. See the end of the Linear
Algebra page on Wikipedia for an extensive (and impressive) reading list.

A.3 Linear Algebra University Courses

University courses on linear algebra are useful in that they layout the topics that an undergraduate
student is expected to know. As a machine learning practitioner, it is more than you need, but
does provide context for the elements that you do need to know. Many university courses now
provide PDF versions of lecture slides, notes, and readings. Some even provide pre-recorded
video lectures, which can be invaluable. I would encourage you to use university course material
surgically by dipping into courses to get deeper knowledge on specific topics. I think working
through a given course end-to-end is too time consuming and covers too much for the average
machine learning practitioner. Some recommended courses from top US schools include:

� Linear Algebra at MIT by Gilbert Strang.
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.

htm

� The Matrix in Computer Science at Brown by Philip Klein.
http://cs.brown.edu/courses/cs053/current/index.htm

� Computational Linear Algebra for Coders at University of San Francisco by Rachel
Thomas.
https://github.com/fastai/numerical-linear-algebra/

http://amzn.to/2j2J0g4
http://amzn.to/2BGuEqI
http://amzn.to/2k76D4C
http://amzn.to/2B9xnLD
http://amzn.to/2kjEF4S
http://amzn.to/2AUcEc5
http://amzn.to/2AWIViz
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm
http://cs.brown.edu/courses/cs053/current/index.htm
https://github.com/fastai/numerical-linear-algebra/

A.4. Linear Algebra Online Courses 170

A.4 Linear Algebra Online Courses

Online courses are different from university courses. They are designed for distance education
and often are less complete or less rigorous than a full undergraduate course. This is a good
feature for machine learning practitioners looking to get up to speed fast on the topic. If the
course is short, it may be worth taking it through end-to-end. Generally, and like university
courses, I would recommend being surgical with the topics and dip in as needed. Some online
courses I recommend include:

� Linear Algebra on Khan Academy.
https://www.khanacademy.org/math/linear-algebra

� Linear Algebra: Foundations to Frontiers on edX.
https://www.edx.org/course/laff-linear-algebra-foundations-to-frontiers

A.5 NumPy Resources

You may need help with NumPy when implementing your linear algebra in Python. The NumPy
API documentation is excellent, below are a few resources that you can use to learn more about
how NumPy works or how to use specific NumPy functions.

� NumPy Reference.
https://docs.scipy.org/doc/numpy/reference/

� NumPy Array Creation Routines.
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

� NumPy Array Manipulation Routines.
https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html

� NumPy Linear Algebra.
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

� SciPy Linear Algebra.
https://docs.scipy.org/doc/scipy/reference/linalg.html

If you are looking for a broader understanding on NumPy and SciPy usage, the below books
provide a good starting reference:

� Python for Data Analysis, 2017.
http://amzn.to/2B1sfXi

� Elegant SciPy, 2017.
http://amzn.to/2yujXnT

� Guide to NumPy, 2015.
http://amzn.to/2j3kEzd

https://www.khanacademy.org/math/linear-algebra
https://www.edx.org/course/laff-linear-algebra-foundations-to-frontiers
https://docs.scipy.org/doc/numpy/reference/
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/scipy/reference/linalg.html
http://amzn.to/2B1sfXi
http://amzn.to/2yujXnT
http://amzn.to/2j3kEzd

A.6. Ask Questions About Linear Algebra 171

A.6 Ask Questions About Linear Algebra

There are a lot of places that you can ask questions about linear algebra online given the current
abundance of question-and-answer platforms. Below is a list of the top places I recommend
posting a question. Remember to search for your question before posting in case it has been
asked and answered before.

� Linear Algebra tag on the Mathematics Stack Exchange.
https://math.stackexchange.com/?tags=linear-algebra

� Linear Algebra tag on Cross Validated.
https://stats.stackexchange.com/questions/tagged/linear-algebra

� Linear Algebra tag on Stack Overflow.
https://stackoverflow.com/questions/tagged/linear-algebra

� Linear Algebra on Quora.
https://www.quora.com/topic/Linear-Algebra

� Math Subreddit.
https://www.reddit.com/r/math/

A.7 How to Ask Questions

Knowing where to get help is the first step, but you need to know how to get the most out of
these resources. Below are some tips that you can use:

� Boil your question down to the simplest form. E.g. not something broad like my model
does not work or how does x work.

� Search for answers before asking questions.

� Provide complete code and error messages.

� Boil your code down to the smallest possible working example that demonstrates the issue.

A.8 Contact the Author

You are not alone. If you ever have any questions about deep learning, natural language
processing, or this book, please contact me directly. I will do my best to help.

Jason Brownlee
Jason@MachineLearningMastery.com

https://math.stackexchange.com/?tags=linear-algebra
https://stats.stackexchange.com/questions/tagged/linear-algebra
https://stackoverflow.com/questions/tagged/linear-algebra
https://www.quora.com/topic/Linear-Algebra
https://www.reddit.com/r/math/

Appendix B

How to Setup a Workstation for
Python

It can be difficult to install a Python machine learning environment on some platforms. Python
itself must be installed first and then there are many packages to install, and it can be confusing
for beginners. In this tutorial, you will discover how to setup a Python machine learning
development environment using Anaconda.

After completing this tutorial, you will have a working Python environment to begin learning,
practicing, and developing machine learning software. These instructions are suitable for
Windows, Mac OS X, and Linux platforms. I will demonstrate them on OS X, so you may see
some mac dialogs and file extensions.

B.1 Overview

In this tutorial, we will cover the following steps:

1. Download Anaconda

2. Install Anaconda

3. Start and Update Anaconda

Note: The specific versions may differ as the software and libraries are updated frequently.

B.2 Download Anaconda

In this step, we will download the Anaconda Python package for your platform. Anaconda is a
free and easy-to-use environment for scientific Python.

� 1. Visit the Anaconda homepage.
https://www.continuum.io/

� 2. Click Anaconda from the menu and click Download to go to the download page.
https://www.continuum.io/downloads

172

https://www.continuum.io/
https://www.continuum.io/downloads

B.2. Download Anaconda 173

Figure B.1: Click Anaconda and Download.

� 3. Choose the download suitable for your platform (Windows, OSX, or Linux):

– Choose Python 3.6

– Choose the Graphical Installer

B.3. Install Anaconda 174

Figure B.2: Choose Anaconda Download for Your Platform.

This will download the Anaconda Python package to your workstation. I’m on OS X, so I
chose the OS X version. The file is about 426 MB. You should have a file with a name like:

Anaconda3-4.4.0-MacOSX-x86_64.pkg

Listing B.1: Example filename on Mac OS X.

B.3 Install Anaconda

In this step, we will install the Anaconda Python software on your system. This step assumes
you have sufficient administrative privileges to install software on your system.

� 1. Double click the downloaded file.

� 2. Follow the installation wizard.

B.3. Install Anaconda 175

Figure B.3: Anaconda Python Installation Wizard.

Installation is quick and painless. There should be no tricky questions or sticking points.

B.4. Start and Update Anaconda 176

Figure B.4: Anaconda Python Installation Wizard Writing Files.

The installation should take less than 10 minutes and take up a little more than 1 GB of
space on your hard drive.

B.4 Start and Update Anaconda

In this step, we will confirm that your Anaconda Python environment is up to date. Anaconda
comes with a suite of graphical tools called Anaconda Navigator. You can start Anaconda
Navigator by opening it from your application launcher.

B.4. Start and Update Anaconda 177

Figure B.5: Anaconda Navigator GUI.

You can use the Anaconda Navigator and graphical development environments later; for now,
I recommend starting with the Anaconda command line environment called conda. Conda is
fast, simple, it’s hard for error messages to hide, and you can quickly confirm your environment
is installed and working correctly.

� 1. Open a terminal (command line window).

� 2. Confirm conda is installed correctly, by typing:

conda -V

Listing B.2: Check the conda version.

You should see the following (or something similar):

conda 4.3.21

Listing B.3: Example conda version.

� 3. Confirm Python is installed correctly by typing:

python -V

Listing B.4: Check the Python version.

You should see the following (or something similar):

Python 3.6.1 :: Anaconda 4.4.0 (x86_64)

Listing B.5: Example Python version.

B.4. Start and Update Anaconda 178

If the commands do not work or have an error, please check the documentation for help for
your platform. See some of the resources in the Further Reading section.

� 4. Confirm your conda environment is up-to-date, type:

conda update conda

conda update anaconda

Listing B.6: Update conda and anaconda.

You may need to install some packages and confirm the updates.

� 5. Confirm your SciPy environment.

The script below will print the version number of the key SciPy libraries you require for
machine learning development, specifically: SciPy, NumPy, Matplotlib, Pandas, Statsmodels,
and Scikit-learn. You can type python and type the commands in directly. Alternatively, I
recommend opening a text editor and copy-pasting the script into your editor.

scipy

import scipy

print('scipy: %s' % scipy.__version__)

numpy

import numpy

print('numpy: %s' % numpy.__version__)

matplotlib

import matplotlib

print('matplotlib: %s' % matplotlib.__version__)

pandas

import pandas

print('pandas: %s' % pandas.__version__)

statsmodels

import statsmodels

print('statsmodels: %s' % statsmodels.__version__)

scikit-learn

import sklearn

print('sklearn: %s' % sklearn.__version__)

Listing B.7: Code to check that key Python libraries are installed.

Save the script as a file with the name: versions.py. On the command line, change your
directory to where you saved the script and type:

python versions.py

Listing B.8: Run the script from the command line.

You should see output like the following:

scipy: 1.0.0

numpy: 1.14.0

matplotlib: 2.1.1

pandas: 0.22.0

statsmodels: 0.8.0

sklearn: 0.19.1

Listing B.9: Sample output of versions script.

B.5. Further Reading 179

B.5 Further Reading

This section provides resources if you want to know more about Anaconda.

� Anaconda homepage.
https://www.continuum.io/

� Anaconda Navigator.
https://docs.continuum.io/anaconda/navigator.html

� The conda command line tool.
http://conda.pydata.org/docs/index.html

B.6 Summary

Congratulations, you now have a working Python development environment for machine learning.
You can now learn and practice machine learning on your workstation.

https://www.continuum.io/
https://docs.continuum.io/anaconda/navigator.html
http://conda.pydata.org/docs/index.html

Appendix C

Linear Algebra Cheat Sheet

This appendix provides a quick-reference for NumPy examples for common linear algebra
operations.

C.1 Array Creation

There are many ways to create NumPy arrays.

C.1.1 Array

from numpy import array

A = array([[1,2,3],[1,2,3],[1,2,3]])

C.1.2 Empty

from numpy import empty

A = empty([3,3])

C.1.3 Zeros

from numpy import zeros

A = zeros([3,5])

C.1.4 Ones

from numpy import ones

A = ones([5, 5])

C.2 Vectors

A vector is a list or column of scalars.

180

C.3. Matrices 181

C.2.1 Vector Addition

c = a + b

C.2.2 Vector Subtraction

c = a - b

C.2.3 Vector Multiplication

c = a * b

C.2.4 Vector Division

c = a / b

C.2.5 Vector Dot Product

c = a.dot(b)

C.2.6 Vector-Scalar Multiplication

c = a * 2.2

C.2.7 Vector Norm

from numpy.linalg import norm

l2 = norm(v)

C.3 Matrices

A matrix is a two-dimensional array of scalars.

C.3.1 Matrix Addition

C = A + B

C.3.2 Matrix Subtraction

C = A - B

C.4. Types of Matrices 182

C.3.3 Matrix Multiplication (Hadamard Product)

C = A * B

C.3.4 Matrix Division

C = A / B

C.3.5 Matrix-Matrix Multiplication (Dot Product)

C = A.dot(B)

C.3.6 Matrix-Vector Multiplication (Dot Product)

C = A.dot(b)

C.3.7 Matrix-Scalar Multiplication

C = A.dot(2.2)

C.4 Types of Matrices

Different types of matrices are often used as elements in broader calculations.

C.4.1 Triangle Matrix

lower

from numpy import tril

lower = tril(M)

upper

from numpy import triu

upper = triu(M)

C.4.2 Diagonal Matrix

from numpy import diag

d = diag(M)

C.4.3 Identity Matrix

from numpy import identity

I = identity(3)

C.5. Matrix Operations 183

C.5 Matrix Operations

Matrix operations are often used as elements in broader calculations.

C.5.1 Matrix Transpose

B = A.T

C.5.2 Matrix Inversion

from numpy.linalg import inv

B = inv(A)

C.5.3 Matrix Trace

from numpy import trace

B = trace(A)

C.5.4 Matrix Determinant

from numpy.linalg import det

B = det(A)

C.5.5 Matrix Rank

from numpy.linalg import matrix_rank

r = matrix_rank(A)

C.6 Factorization

Matrix factorization, or matrix decomposition, breaks a matrix down into its constituent parts
to make other operations simpler and more numerically stable.

C.6.1 LU Decomposition

from scipy.linalg import lu

P, L, U = lu(A)

C.6.2 QR Decomposition

from numpy.linalg import qr

Q, R = qr(A, 'complete')

C.7. Statistics 184

C.6.3 Cholesky Decomposition

from numpy.linalg import cholesky

L = cholesky(A)

C.6.4 Eigendecomposition

from numpy.linalg import eig

values, vectors = eig(A)

C.6.5 Singular-Value Decomposition

from scipy.linalg import svd

U, s, V = svd(A)

C.7 Statistics

Statistics summarize the contents of vectors or matrices and are often used as components in
broader operations.

C.7.1 Mean

from numpy import mean

result = mean(v)

C.7.2 Variance

from numpy import var

result = var(v, ddof=1)

C.7.3 Standard Deviation

from numpy import std

result = std(v, ddof=1)

C.7.4 Covariance Matrix

from numpy import cov

sigma = cov(A)

C.7. Statistics 185

C.7.5 Linear Least Squares

from numpy.linalg import lstsq

b = lstsq(X, y)

Appendix D

Basic Math Notation

You cannot avoid mathematical notation when reading the descriptions of machine learning
methods. Often, all it takes is one term or one fragment of notation in an equation to completely
derail your understanding of the entire procedure. This can be extremely frustrating, especially
for machine learning beginners coming from the world of development. You can make great
progress if you know a few basic areas of mathematical notation and some tricks for working
through the description of machine learning methods in papers and books. In this tutorial,
you will discover the basics of mathematical notation that you may come across when reading
descriptions of techniques in machine learning. After completing this tutorial, you will know:

� Notation for arithmetic including variations of multiplication, exponents, roots and
logarithms.

� Notation for sequences and sets including indexing, summation and set membership.

� 5 Techniques you can use to get help if you are struggling with mathematical notation.

Let’s get started.

D.1 Tutorial Overview

This tutorial is divided into 7 parts; they are:

1. The Frustration with Math Notation

2. Arithmetic Notation

3. Greek Alphabet

4. Sequence Notation

5. Set Notation

6. Other Notation

7. Tips for Getting More Help

186

D.2. The Frustration with Math Notation 187

D.2 The Frustration with Math Notation

You will encounter mathematical notation when reading about machine learning algorithms.
For example, notation may be used to:

� Describe an algorithm.

� Describe data preparation.

� Describe results.

� Describe a test harness.

� Describe implications.

These descriptions may be in research papers, textbooks, blog posts and elsewhere. Often
the terms are well defined, but there are also mathematical notation norms that you may not
be familiar with. All it takes is one term or one equation that you do not understand and your
understanding of the entire method will be lost. I’ve suffered this problem myself many times
and it is incredibly frustrating! In this tutorial we will review some basic mathematical notation
that will help you when reading descriptions of machine learning methods.

D.3 Arithmetic Notation

In this section we will go over some less obvious notations for basic arithmetic as well as a few
concepts you may have forgotten since school.

D.3.1 Simple Arithmetic

The notation for basic arithmetic is as you would write it. For example:

� Addition: 1 + 1 = 2

� Subtraction: 2− 1 = 1

� Multiplication: 2× 2 = 4

� Division: 2
2

= 1

Most mathematical operations have an sister operation that performs the inverse operation,
for example subtraction is the inverse of addition and division is the inverse of multiplication.

D.3.2 Algebra

We often want to describe operations abstractly to separate them from specific data or specific
implementations. For this reason we see heavy use of algebra, that is uppercase and/or lowercase
letters or words to represents terms or concepts in mathematical notation. It is also common to
use letters from the Greek alphabet. Each sub-field of math may have reserved letters, that
is terms or letters that always mean the same thing. Nevertheless, algebraic terms should be
defined as part of the description and if they are not, it may just be a poor description, not
your fault.

D.3. Arithmetic Notation 188

D.3.3 Multiplication Notation

Multiplication is a common notation and has a few short hands. Often a little “x” (×) or an
asterisk “*” is used to represent multiplication:

c = a× b (D.1)

Or

c = a ∗ b (D.2)

You may see a dot notation used, for example:

c = a · b (D.3)

Alternately, you may see no operation and no white space separation between previously
defined terms, for example:

c = ab (D.4)

Which again is the same thing.

D.3.4 Exponents and Square Roots

An exponent is a number raised to a power. The notation is written as the original number or
the base with a second number or the exponent shown as a superscript, for example:

23 (D.5)

Which would be calculated as 2 multiplied by itself 3 times or cubing:

2× 2× 2 = 8 (D.6)

A number raised to the power to is said to be it’s square

22 = 2× 2 = 4 (D.7)

The square of a number can be inverted by calculating the square root. This is shown using
the notation of a number and with a tick above

√
x.

√
4 = 2 (D.8)

Here, we know the result and the exponent and we wish to find the base. In fact, the root
operation can be used to inverse any exponent, it just so happens that the default square root
assumes an exponent of 2, represented by a subscript 2 in front of the square root tick. For
example, we can invert the cubing of a number by taking the cube root:

23 = 8 (D.9)

3
√

6 = 2 (D.10)

D.4. Greek Alphabet 189

D.3.5 Logarithms and e

When we raise 10 to an integer exponent we often call this an order of magnitude.

102 = 10× 10 (D.11)

Another way to reverse this operation is by calculating the logarithm of the result 100
assuming a base of 10, in notation this is written as log10().

log10(100) = 2 (D.12)

Here, we know the result and the base and wish to find the exponent. This allows us to
move up and down orders of magnitude very easily. Taking the logarithm assuming the base of
2 is also commonly used, given the use of binary arithmetic used in computers. For example:

26 = 64 (D.13)

log2(64) = 6 (D.14)

Another popular logarithm is to assume the natural base called e. The e is reserved and is a
special number or a constant called Euler’s number (pronounced oy-ler) that refers to a value
with practically infinite precision.

e = 2.71828 · · · (D.15)

Raising e to a power is called a natural exponential function:

e2 = 7.38905 · · · (D.16)

It can be inverted using the natural logarithm which is denoted as ln():

ln(7.38905 · · ·) = 2 (D.17)

Without going into detail, the natural exponent and natural logarithm prove useful throughout
mathematics to abstractly describe the continuous growth of some systems, e.g. systems that
grow exponentially such as compound interest.

D.4 Greek Alphabet

Greek letters are used throughout mathematical notation for variables, constants, functions and
more. For example in statistics we talk about the mean using the lowercase Greek letter mu
(µ), and the standard deviation as the lowercase Greek letter sigma (σ). In linear regression we
talk about the coefficients as the lowercase letter beta (β). And so on. It is useful to know all
of the uppercase and lowercase Greek letters and how to pronounce them. When I was a grad
student, I printed the Greek alphabet and stuck it on my computer monitor so that I could
memorize it. A useful trick! Below is the full Greek alphabet.

D.5. Sequence Notation 190

Figure D.1: Greek Alphabet, Taken from Wikipedia.

The Wikipedia page titled Greek letters used in mathematics, science, and engineering1 is
also a useful guide as it lists common uses for each Greek letter in different sub-fields of math
and science.

D.5 Sequence Notation

Machine learning notation often describes an operation on a sequence. A sequence may be an
array of data or a list of terms.

D.5.1 Indexing

A key to reading notation for sequences is the notation of indexing elements in the sequence.
Often the notation will specify the beginning and end of the sequence, such as 1 to n, where n
will be the extent or length of the sequence. Items in the sequence are index by a variable such
as i, j, k as a subscript. This is just like array notation. For example ai is the ith element of
the sequence a. If the sequence is two dimensional, two indices may be used, for example: bi,j is

the (i, j)th element of the sequence b.

D.5.2 Sequence Operations

Mathematical operations can be performed over a sequence. Two operations are performed on
sequences so often that they have their own shorthand, the sum and the multiplication.

Sequence Summation

The sum over a sequence is denoted as the uppercase Greek letter sigma (Σ). It is specified
with the variable and start of the sequence summation below the sigma (e.g. i = 1) and the
index of the end of the summation above the sigma (e.g. n).

n∑
i=1

ai (D.18)

This is the sum of the sequence a starting at element 1 to element n.

1https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_

engineering

https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering
https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering

D.6. Set Notation 191

Sequence Multiplication

The multiplication over a sequence is denoted as the uppercase Greek letter pi (Π). It is specified
in the same way as the sequence summation with the beginning and end of the operation below
and above the letter respectively.

n∏
i=1

ai (D.19)

This is the product of the sequence a starting at element 1 to element n.

D.6 Set Notation

A set is a group of unique items. We may see set notation used when defining terms in machine
learning.

D.6.1 Set of Numbers

A common set you may see is a set of numbers, such as a term defined as being within the set
of integers or the set of real numbers. Some common sets of numbers you may see include:

� Set of all natural numbers: N

� Set of all integers: Z

� Set of all real numbers: R

There are other sets, see Special sets on Wikipedia2. We often talk about real-values or
real numbers when defining terms rather than floating point values, which are really discrete
creations for operations in computers.

D.6.2 Set Membership

It is common to see set membership in definitions of terms. Set membership is denoted as a
symbol that looks like an uppercase “E” (∈).

a ∈ R (D.20)

Which means a is defined as being a member of the set R or the set of real numbers. There
is also a host of set operations, two common set operations include:

� Union, or aggregation: A ∪B

� Intersection, or overlap: A ∩B

Learn more about sets on Wikipedia3.

2https://en.wikipedia.org/wiki/Set_(mathematics)#Special_sets
3https://en.wikipedia.org/wiki/Set_(mathematics)

https://en.wikipedia.org/wiki/Set_(mathematics)#Special_sets
https://en.wikipedia.org/wiki/Set_(mathematics)

D.7. Other Notation 192

D.7 Other Notation

There is other notation that you may come across. I try to lay some of it out in this section. It is
common to define a method in the abstract and then define it again as a specific implementation
with separate notation. For example, if we are estimating a variable x we may represent it using
a notation that modifies the x, for example:

� x-bar (x̄)

� x-prime (x̀)

� x-hat (x̂)

� x-tilde (x̃)

The same notation may have different meaning in a different context, such as use on different
objects or sub-fields of mathematics. For example, a common point of confusion is |x|, which,
depending on context can mean:

� |x|: The absolute or positive value of x.

� |x|: The length of the vector x.

� |x|: The cardinality of the set x.

This tutorial only covered the basics of mathematical notation. There are some subfields of
mathematics that are more relevant to machine learning and should be reviewed in more detail.
They are:

� Linear Algebra.

� Statistics.

� Probability.

� Calculus.

And perhaps a little bit of multivariate analysis and information theory.

D.8 Tips for Getting More Help

This section lists some tips that you can use when you are struggling with mathematical notation
in machine learning.

D.8.1 Think About the Author

People wrote the paper or book you are reading. People that can make mistakes, make omissions,
and even make things confusing because they don’t fully understand what they are writing.
Relax the constraints of the notation you are reading slightly and think about the intent of the
author. What are they trying to get across? Perhaps you can even contact the author via email,
Twitter, Facebook, Linked-in, etc, and seek clarification. Remember that academics want other
people to understand and use their work (mostly).

D.8. Tips for Getting More Help 193

D.8.2 Check Wikipedia

Wikipedia has lists of notation which can help narrow down on the meaning or intent of the
notation you are reading. Two places I recommend you start are:

� List of mathematical symbols on Wikipedia.
https://en.wikipedia.org/wiki/List_of_mathematical_symbols

� Greek letters used in mathematics, science, and engineering on Wikipedia.
https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_

engineering

D.8.3 Sketch in Code

Mathematical operations are just functions on data. Map everything you’re reading to pseu-
docode with variables, for-loops and more. You might want to use a scripting language as you
go along with small arrays of contrived data or even an Excel spreadsheet. As your reading
and understanding of the technique improves, your code-sketch of the technique will make more
sense and at the end you will have a mini prototype to play with.

I never used to take much stock in this approach until I saw an academic sketch out a very
complex paper in a few lines of Matlab with some contrived data. It knocked my socks off
because I believed the system had to be coded completely and run with a real dataset and that
the only option was to get the original code and data. I was very wrong. Also, looking back,
the guy was gifted. I now use this method all the time and sketch techniques in Python.

D.8.4 Seek Alternatives

There is a trick I use when I’m trying to understand a new technique. I find and read all the
papers that reference the paper I’m reading with the new technique. Reading other academics
interpretation and re-explanation of the technique can often clarify my misunderstandings in
the original description. Not always though. Sometimes it can muddy the waters and introduce
misleading explanations or new notation. But more often than not, it helps. After circling back
to the original paper and re-reading it, I can often find cases where subsequent papers have
actually made errors and misinterpretations of the original method.

D.8.5 Post a Question

There are places online where people love to explain math to others. Seriously! Consider taking
a screen shot of the notation you are struggling with, write out the full reference or link to it
and put it and your area of misunderstanding to a question and answer site. Two great places
to start are:

� Mathematics Stack Exchange.
https://math.stackexchange.com/

� Cross Validated.
https://stats.stackexchange.com/

https://en.wikipedia.org/wiki/List_of_mathematical_symbols
https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering
https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering
https://math.stackexchange.com/
https://stats.stackexchange.com/

D.9. Further Reading 194

D.9 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Section 0.1. Reading Mathematics, Vector Calculus, Linear Algebra, and Differential
Forms, 2009.
http://amzn.to/2qarp8L

� The Language and Grammar of Mathematics, Timothy Gowers.
http://assets.press.princeton.edu/chapters/gowers/gowers_I_2.pdf

� Understanding Mathematics, a guide, Peter Alfeld.
http://www.math.utah.edu/~pa/math.html

D.10 Summary

In this tutorial, you discovered the basics of mathematical notation that you may come across
when reading descriptions of techniques in machine learning. Specifically, you learned:

� Notation for arithmetic including variations of multiplication, exponents, roots and
logarithms.

� Notation for sequences and sets including indexing, summation and set membership.

� 5 Techniques you can use to get help if you are struggling with mathematical notation.

http://amzn.to/2qarp8L
http://assets.press.princeton.edu/chapters/gowers/gowers_I_2.pdf
http://www.math.utah.edu/~pa/math.html

Part VIII

Conclusions

195

How Far You Have Come

You made it. Well done. Take a moment and look back at how far you have come. You now
know:

� What linear algebra is and why it is relevant and important to machine learning.

� How to create, index, and generally manipulate data in NumPy arrays.

� What a vector is and how to perform vector arithmetic and calculate vector norms.

� What a matrix is and how to perform matrix arithmetic, including matrix multiplication.

� A suite of types of matrices, their properties, and advanced operations involving matrices.

� What a tensor is and how to perform basic tensor arithmetic.

� Matrix factorization methods, including the eigendecomposition and singular-value de-
composition.

� How to calculate and interpret basic statistics using the tools of linear algebra.

� How to implement methods using the tools of linear algebra, such as principal component
analysis and linear least squares regression.

Don’t make light of this. You have come a long way in a short amount of time. You
have developed the important and valuable foundational skills in linear algebra. You can now
confidently:

� Read the linear algebra mathematics in machine learning papers.

� Implement the linear algebra descriptions of machine learning algorithms.

� Describe your machine learning models using the notation and operations of linear algebra.

The sky’s the limit.

Thank You!

I want to take a moment and sincerely thank you for letting me help you start your linear
algebra journey. I hope you keep learning and have fun as you continue to master machine
learning.

Jason Brownlee
2018

196

	Copyright
	Contents
	Preface
	I Introduction
	Welcome
	Who Is This Book For?
	About Your Outcomes
	How to Read This Book
	About the Book Structure
	About Python Code Examples
	About Further Reading
	About Getting Help
	Summary

	II Foundations
	Introduction to Linear Algebra
	Tutorial Overview
	Linear Algebra
	Numerical Linear Algebra
	Linear Algebra and Statistics
	Applications of Linear Algebra
	Further Reading
	Summary

	Linear Algebra and Machine Learning
	Reasons to NOT Learn Linear Algebra
	Learn Linear Algebra Notation
	Learn Linear Algebra Arithmetic
	Learn Linear Algebra for Statistics
	Learn Matrix Factorization
	Learn Linear Least Squares
	One More Reason
	Summary

	Examples of Linear Algebra in Machine Learning
	Overview
	Dataset and Data Files
	Images and Photographs
	One Hot Encoding
	Linear Regression
	Regularization
	Principal Component Analysis
	Singular-Value Decomposition
	Latent Semantic Analysis
	Recommender Systems
	Deep Learning
	Summary

	III NumPy
	Introduction to NumPy Arrays
	Tutorial Overview
	NumPy N-dimensional Array
	Functions to Create Arrays
	Combining Arrays
	Extensions
	Further Reading
	Summary

	Index, Slice and Reshape NumPy Arrays
	Tutorial Overview
	From List to Arrays
	Array Indexing
	Array Slicing
	Array Reshaping
	Extensions
	Further Reading
	Summary

	NumPy Array Broadcasting
	Tutorial Overview
	Limitation with Array Arithmetic
	Array Broadcasting
	Broadcasting in NumPy
	Limitations of Broadcasting
	Extensions
	Further Reading
	Summary

	IV Matrices
	Vectors and Vector Arithmetic
	Tutorial Overview
	What is a Vector
	Defining a Vector
	Vector Arithmetic
	Vector Dot Product
	Vector-Scalar Multiplication
	Extensions
	Further Reading
	Summary

	Vector Norms
	Tutorial Overview
	Vector Norm
	Vector L1 Norm
	Vector L2 Norm
	Vector Max Norm
	Extensions
	Further Reading
	Summary

	Matrices and Matrix Arithmetic
	Tutorial Overview
	What is a Matrix
	Defining a Matrix
	Matrix Arithmetic
	Matrix-Matrix Multiplication
	Matrix-Vector Multiplication
	Matrix-Scalar Multiplication
	Extensions
	Further Reading
	Summary

	Types of Matrices
	Tutorial Overview
	Square Matrix
	Symmetric Matrix
	Triangular Matrix
	Diagonal Matrix
	Identity Matrix
	Orthogonal Matrix
	Extensions
	Further Reading
	Summary

	Matrix Operations
	Tutorial Overview
	Transpose
	Inverse
	Trace
	Determinant
	Rank
	Extensions
	Further Reading
	Summary

	Sparse Matrices
	Tutorial Overview
	Sparse Matrix
	Problems with Sparsity
	Sparse Matrices in Machine Learning
	Working with Sparse Matrices
	Sparse Matrices in Python
	Extensions
	Further Reading
	Summary

	Tensors and Tensor Arithmetic
	Tutorial Overview
	What are Tensors
	Tensors in Python
	Tensor Arithmetic
	Tensor Product
	Extensions
	Further Reading
	Summary

	V Factorization
	Matrix Decompositions
	Tutorial Overview
	What is a Matrix Decomposition
	LU Decomposition
	QR Decomposition
	Cholesky Decomposition
	Extensions
	Further Reading
	Summary

	Eigendecomposition
	Tutorial Overview
	Eigendecomposition of a Matrix
	Eigenvectors and Eigenvalues
	Calculation of Eigendecomposition
	Confirm an Eigenvector and Eigenvalue
	Reconstruct Matrix
	Extensions
	Further Reading
	Summary

	Singular Value Decomposition
	Tutorial Overview
	What is the Singular-Value Decomposition
	Calculate Singular-Value Decomposition
	Reconstruct Matrix
	Pseudoinverse
	Dimensionality Reduction
	Extensions
	Further Reading
	Summary

	VI Statistics
	Introduction to Multivariate Statistics
	Tutorial Overview
	Expected Value and Mean
	Variance and Standard Deviation
	Covariance and Correlation
	Covariance Matrix
	Extensions
	Further Reading
	Summary

	Principal Component Analysis
	Tutorial Overview
	What is Principal Component Analysis
	Calculate Principal Component Analysis
	Principal Component Analysis in scikit-learn
	Extensions
	Further Reading
	API
	Articles
	Summary

	Linear Regression
	Tutorial Overview
	What is Linear Regression
	Matrix Formulation of Linear Regression
	Linear Regression Dataset
	Solve via Inverse
	Solve via QR Decomposition
	Solve via SVD and Pseudoinverse
	Solve via Convenience Function
	Extensions
	Further Reading
	Summary

	VII Appendix
	Getting Help
	Linear Algebra on Wikipedia
	Linear Algebra Textbooks
	Linear Algebra University Courses
	Linear Algebra Online Courses
	NumPy Resources
	Ask Questions About Linear Algebra
	How to Ask Questions
	Contact the Author

	How to Setup a Workstation for Python
	Overview
	Download Anaconda
	Install Anaconda
	Start and Update Anaconda
	Further Reading
	Summary

	Linear Algebra Cheat Sheet
	Array Creation
	Vectors
	Matrices
	Types of Matrices
	Matrix Operations
	Factorization
	Statistics

	Basic Math Notation
	Tutorial Overview
	The Frustration with Math Notation
	Arithmetic Notation
	Greek Alphabet
	Sequence Notation
	Set Notation
	Other Notation
	Tips for Getting More Help
	Further Reading
	Summary

	VIII Conclusions
	How Far You Have Come

